Couplers

Design and Fabrication Issues of High Power & Higher Order Modes Couplers for Superconducting Cavities

Shuichi Noguchi, KEK

Contents

Design Issues of Input Coupler
 Design Issues of HOM Coupler

RF Power Input Coupler

Coupler Design & Fabrication

Design	Fabrication			
RF	Geometry	Coaxial		
		Rectangular		
Mechanical	Material	Cu Plated SUS		
Thermal	Method	Tig Welding Brazing, EBW		

Design Issues of Input Coupler

Requirements / Specification

- Frequency
- Maximum Power
- Operation Mode
- Heat Load
- Coupling
 Tune-ability

Choices

- Type ; Coaxial or Wave Guide
- Position ; Cell or Beam Pipe
- Number of Windows ; Single or Double
- Cooling ; Conduction, G-He, L-He, L-N2, Water
- Number of Couplers

Best Choice for SC

Coaxial Antenna Type Coupler on Beam Pipe is usually the Best Solution.

Exception;

Low β Cavity ; Coaxial Antenna on Cavity High Frequency Cavity ; Wave Guide

Major Couplers used

Accelerator	TRISTAN KEKB	SNS	LEP	FLASH	CEBAF
Frequency	508MHz	805MHz	324MHz	1.3GHz	1.5GHz
Power Requirement	CW 400kW	Pulse 400kW	CW 100kW	Pulse 300kW	CW 10kW
Coupler Type	Coaxial Antenna	Coaxial Antenna	Coaxial Antenna	Coaxial Antenna	Wave Guide
Window Type Size	Coaxial Disk	Coaxial Disk	Cylinder	Cylinder	Square
Ceramic Size	φ180,t10	φ100,t9	φ150	φ40, φ60	60 x 120
Used Coupler	\sim 40	\sim 80	\sim 200	\sim 80	\sim 350

Coaxial Antenna Coupler

Examples
Components
Coupling

Shuichi Noguchi, KEK

Shuichi Noguchi, KEK

SRF2009Tutorial, Berlin

10

TTF-3 Coupler

Processing Stand

Cavity

Coupler, Support

Shuichi Noguchi, KEK

Coaxial Disk Type Window Coupler

SNS

KEK-JAEA

Shuichi Noguchi, KEK

STF-1

TTF-V

Shuichi Noguchi, KEK

STF-I & II Couplers

Shuichi Noguchi, KEK

CW Input Coupler for KEK-ERL

Shuichi Noguchi, KEK

ERL Injector Cryomodule

Components of Coaxial Antenna Coupler

- Coaxial Line (Cu Plated SUS)
- Window (High Purity Al₂O₃)
- Wave Guide to Coaxial Transformer
- Diagnostics

Vacuum, Arcing, Electron

RF Design Criteria

- Maximum Peak E (Pulse High Power Application)
- Loss (CW Application)
- Reflection
- Multipacting

Fabrication, Assembly, Risk, etc.

Coaxial Waveguide (TEM-Modes)

$$\begin{split} E_{\theta} &= 0, \quad H_{r} = 0, \\ \frac{\partial}{\partial r} (r E_{r}) &= 0, \quad \frac{\partial}{\partial r} (r H_{\theta}) = 0 \\ E_{r} &= \frac{A}{r} e^{-j\beta z}, \quad H_{\theta} = \frac{1}{Z_{i}} \frac{A}{r} e^{-j\beta z} \\ V &= \int_{a}^{b} E_{r} dr = A \ln \frac{b}{a} e^{-j\beta z}, \quad I = \int_{0}^{2\pi} J_{s} a d\theta = 2\pi \frac{A}{Z_{i}} e^{-j\beta z} \\ Z_{0} &= \frac{V}{I} = \frac{Z_{i}}{2\pi} \ln \frac{b}{a}; \quad \text{Characteristic Impedance} \end{split}$$

Shuichi Noguchi, KEK

Power Loss

$$P_f = \int_0^{2\pi} \int_a^b \frac{1}{2} \operatorname{Re}\left(E_r H_{\theta}^*\right) r dr d\theta = \frac{A^2}{Z_i} \pi \ln \frac{b}{a}$$

$$P_{loss} = \frac{1}{2} R_s \left[\int_0^{2\pi} \left| H_\theta \right|_{r=a}^2 a d\theta + \int_0^{2\pi} \left| H_\theta \right|_{r=b}^2 b d\theta \right] = R_s \frac{A^2}{Z_i^2} \pi \left(\frac{1}{a} + \frac{1}{b} \right)$$
$$= R_s \frac{P_f}{Z_i} \left(\frac{1}{a} + \frac{1}{b} \right) / \ln \frac{b}{a} = \frac{R_s P_f}{2\pi Z_0} \left(\frac{1}{a} + \frac{1}{b} \right)$$
$$A = \sqrt{\frac{Z_i P_f}{\pi \ln \frac{b}{a}}}$$

Shuichi Noguchi, KEK

a

RF Windows of Coaxial Coupler

Coaxial Disk Window

Shuichi Noguchi, KEK

HFSS Simulation

Shuichi Noguchi, KEK

Warm window and Doorknob

Coupling / Tune-ability Optimum Coupling ; $\frac{1}{Q_{in}} = \frac{1}{Q_0} \left(1 + \frac{P_{beam}}{P_0} \right) = \frac{1}{Q_0} + \frac{1}{Q_b}$

- $P_{beam} >> P_0$; $Q_{in} = Q_b$, depends on Beam Current Coupling Tune - ability may be useful.
 - $Q_{in} \leq 10^7$ is desireble for better RF controll.

Shuichi Noguchi, KEK

Double Couplers

Superposition

At Resonance

$$\begin{split} \sqrt{\frac{P_{r1}}{P_{g1}}} &= \frac{E_{r1}}{E_{g1}} = \left| \frac{1 + \beta_2 - \beta_1}{1 + \beta_1 + \beta_2} \right| & \sqrt{\frac{P_{in1}}{P_{g1}}} = \frac{2\sqrt{(1 + \beta_2)\beta_1}}{1 + \beta_1 + \beta_2} \\ \sqrt{\frac{P_{r2}}{P_{g1}}} &= \frac{E_{r2}}{E_{g1}} = \frac{2\sqrt{\beta_1\beta_2}}{1 + \beta_1 + \beta_2} & \sqrt{\frac{P_{01}}{P_{g1}}} = \frac{2\sqrt{\beta_1}}{1 + \beta_1 + \beta_2} \\ \vec{E}_{g1} &= E_{g1} e^{j(\omega t - kz)} & \vec{E}_{acc1} = E_{acc1} e^{j\omega t} \\ \vec{E}_{r1} &= E_{r1} e^{j(\omega t + kz + \phi)} & \vec{E}_{t2} = E_{t2} e^{j(\omega t + kz' + \Phi)} \\ \phi &= 0; \text{Overcouple} \left(\beta_1^* > 1\right) & \phi = \pi; \text{Undercouple} \left(\beta_1^* < 1\right) \end{split}$$

Shuichi Noguchi, KEK

$$\begin{array}{ll} \text{Optimum Coupling} \quad P_{out1} = P_{out2} = 0 \\ P_{out1} \propto \left| \vec{E}_{r1} + \vec{E}_{t1} \right|^2 = E_{r1}^2 + E_{t1}^2 + 2E_{r1}E_{t1}\cos\left[\phi - (\Psi - \Phi)\right] \\ \text{If } \phi = \pi \text{ and } \Psi = \Phi \qquad P_{out1} \propto \left(E_{r1} - E_{t1}\right)^2 \\ \text{If } P_{g1} = P_{g2} \qquad P_{out1} \propto \left(\frac{1 - \beta_1 + \beta_2 - 2\sqrt{\beta_1 \beta_2}}{1 + \beta_1 + \beta_2}\right)^2 \\ P_{out2} \propto \left(\frac{1 + \beta_1 - \beta_2 - 2\sqrt{\beta_1 \beta_2}}{1 + \beta_1 + \beta_2}\right)^2 \qquad \beta_1 = \beta_2 = \frac{1}{2} \end{array}$$

Shuichi Noguchi, KEK

Processing (Acceptance Test)

- Make them Clean
- Keep them Clean
- Careful Processing with Diagnostics
 Arc Detector, Electron Monitor, Vacuum

Processing of TTF-V Couplers at KEK Step 1 ; Target for XFEL 100 μs 1.0 MW / 400 us. 500 kW / 1.3 ms. 5 Hz 200 µs 1500 400 μs RF Power [kW] 50 µS 20 µS 20 µS 20 µS 1000 0.8 ms 5 Hz 1 Hz 5 Hz 1.3 ms 1.5 ms 500 0 30 40 20 50 60 10⁻³ Vacuum Pressure (Cold) [Pa] [Pa] Vacuum Pressure (Warm) [Pa] Vac. Press. **10**⁻⁴ **10**⁻⁵ 10 50 20 30 60 40 Time [hours] Shuichi Noguchi, KEK SRF2009Tutorial, Berlin 33

TTF-V Couplers at KEK

SRF2009Tutorial, Berlin

HOM Coupler

- Device to lower Q-Values of HOM's
- Output Coupler for HOM's excited by Beam
- Need Filter for the Operating Mode
- So Many HOM Couplers have been designed and used.
- Beam Pipe Absorber is an Alternative.

Design Issues of HOM Coupler

Requirements / Specification

- Frequency
- Dumping
- Maximum Power
- Operation Mode
- Heat Load

Choice

- Type ; Coaxial or Wave Guide
- Position ; Cell or Beam Pipe
- Welded or Flange
- Number of Couplers
- Cooling
- Position of Loads

Best Choice

Coaxial Loop Type Coupler on Beam Pipe is the Best Solution. (TESLA-like) Being used up to 3.9GHz Cavity.

The TESLA –like HOM couplers are nowadays designed in frequency range: 0.8-3.9 GHz

J. Sekutowitz DESY

Shuichi Noguchi, KEK

High-pass Filter (+ Notch Filter)

SRF2009Tutorial, Berlin

39

HFSS Simulation HOM Coupler

Waveguide HOM couplers

Design (1982) works at present in CEBAF both linacs with

I_{beam} ~ 80μAx4 @ Eacc 7 MV/m

HOM power is very low. It can be dissipated inside cryomodule.

Design proposed by G. Wu (JLab) 1500 MHz for 100 mA class ERLs LINAC2004

Design proposed by R. Rimmer (JLab) 750 MHz for 1A class ERLs

PAC2005

Heating at HOM pick-up antenna

H_{antenna-tip} ~ Hsp / 20.

At Eacc = 10 MV/m, $\Delta Po = 8 W$ P-loss (cal.) = 2 W x 2

1st test

(long antenna)

Transition from SC state to normal state occurred at the location isolated thermally.

Shuichi Noguchi, KEK

SRF2009Tutorial, Berlin

2nd test

(short antenna)

Design for CW Application needs

Lower the Magnetic Field at an Antenna. Improved Thermal Design

Shuichi Noguchi, KEK

SRF2009Tutorial, Berlin

43

KEK cERL Design H-Field Distribution

conditions	15MV/m	20MV/m	25MV/m	other				
Antenna type : New , improve inner conductor (probe tip = 10 mm from HOM coupler center)								
(1)c=10mm, <u>u=5mm</u>	<u>850~1000 A/m</u>	<u>1150~1350 A/m</u>	<u>1400~1650 A/m</u>	Probe gap=0.5mm Offset = 0mm				
	Antenna type : old c=0mm, u=0mm (probe tip = 5 mm from HOM coupler center)							
(0)c=0mm, u=0mm	2400~2850 A/m	3000∼3500 A/m	3700~4400 A/m	<mark>0.5mm</mark> Offset = 0mm				
lo	oop type : New , improve in	ner conductor (probe tip = 1	3 mm from HOM coupler ce	enter)				
(1)c=10mm, <u>u=3mm</u>	1800∼2050 A/m	2400∼2720 A/m	3000∼3360 A/m	0.5mm Offset = 6mm				
	loop type : old c=0mm, u=0mm (probe tip = 10 mm from HOM coupler center)							
(0)c=0mm, u=0mm	2200~2400 A/m	2900~3150 A/m	3500~3850 A/m	<mark>0.5mm</mark> Offset = 6mm				
s	TF type : New , improve inr	ner conductor (probe tip = 1	7 mm from HOM coupler ce	enter)				
(1)c=10mm, u=2mm				Offset=10 mm				
STF model : old c=0mm, u=0mm (probe tip = 13 mm from HOM coupler center, due to cut 2mm inner conductor)								
(0)c=0mm, u=0mm	4000~4250 A/m Heating limit at CW	5200~5600 A/m Not use ? CW operation	$6800 \sim 7200 \text{ A/m}$ Not use ? CW operation	0.5mm Offset=10 mm				

2 Stub HOM coupler for cERL

Shuichi Noguchi, KEK

Vertical Test

Shuichi Noguchi, KEK

Q₀-E_{acc} Curve for ERL 2-cell #1 @1.5K & 4.2K

Shuichi Noguchi, KEK