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SRF Cavity Preparation and 
Limitations

J. Mammosser (ORNL)
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Outline:
• Cavity Qualifying Test Limitations (Vertical Test)

– Vertical Test Results
– Main Limitations (Field emission, Thermal breakdown, 

Multipacting)
– Not Covered - (Q-disease, Trapped Magnetic Field, High Field Q-

Drop)
– Performance History

• Today's Standard Processing Procedures
– Standard Processing Sequence (30-40 MV/m)
– Surface cleaning, Chemistry, HPR, Heat treatment, Baking, Helium 

Processing
• Future Process Improvements

– Vertical EP, Plasma Cleaning, Integrated Process Automation
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When Proper Procedure and Attention 
to Detail Occur –

Rongli Geng 3

• 4 out of 5 reached > 35 MV/m after 1st light EP
• A15 quench limited by one defect in one cell

• A15 quench source identified by T-mapping and optical inspection
• A12 data after 1st light EP is not shown
• A12 data shown are after 2nd light EP

Crawford et al
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However performances are not 
always ideal
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Field Emission

Characterized by an exponential drop of the Q-value

Associated with production of x-rays and emission of dark 
current

Today good processes and procedures can minimize or 
eliminate this issue but its always there at some level
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Field Emission
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Field Emission
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Field Emission from Ideal Surface
Fowler-Nordheim model
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Geometrical Origin of Field Enhancement

Smooth particles show little field emission

Simple protrusions are not sufficient to explain the measured 
enhancement factors

Possible explanation: tip on tip (compounded enhancement)
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Localized Defects

mμ20≈

mμ20≈
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Field Emission

mμ1015×≈
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Example of Field Emittors

V

Ni Ni
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C, O, Na, In Al, Si

Stainless steel

Melted

Melted

Melted

Example of Field Emitters
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Looking Inside the Cavity During Testing

• Before onset of 
Radiation outside 
dewar

• Radiation present on 
detector and in CCD 
image
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Enhancement by Absorbates

Adsorbed atoms on the surface can enhance the tunneling of electrons 
from the metal and increase field emission

Beta Enhancement Factors
1 - tip on tip
2 - absorbed gas
3 – insulator enhancement (field 
distortion)
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Qo vs. Eacc Radiation vs. Eacc

If this cavity is limited at this condition, what is the limiting factor?
Field emission?

MP

FE

Field Emission ?MP! And then later on Field Emission !
VTA
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17b in open loop

Radiation 
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(in log scale)
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Pulsed operation
Waveform tells us 

what is happening inside

17b
Radiation at Eacc=16.5 
(Elim=17.5 MV/m due to FE!)

Radiation 
waveform

Field emission
Ex. 17b individual
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Thermal Breakdown

1 4log(ΔT [mK])

Localized heating

Hot area increases with field

At a certain field there is a thermal runaway, the field collapses

sometimes displays a oscillator behavior

sometimes settles at a lower value

sometimes displays a hysteretic behavior
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Thermal Breakdown

Thermal breakdown occurs when the heat generated at the hot spot is 
larger than that can be evacuated to the helium bath

Both the thermal conductivity and the surface resistance of Nb are 
highly temperature dependent between 2 and 9K
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Thermal Breakdown
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Surface Resistance vs Temperature
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Power Dissipation vs Temperature
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Niobium Specific Heat vs Temperature
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Heat Transfer Density (Bath-Niobium)

• Tb –Helium Bath
• Ts – Niobium 

Surface Helium 
side

• q- heat density 
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Niobium Thermal Conductivity vs 
Temperature



27 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Thermal Breakdown
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Thermal Conductivity of Nb
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Residual Resistance Ratio

RRR is the ratio of the resistivity at 300K and 4.2K

(300 )
(4.2 )

KRRR
K

r
r

=

RRR is related to the mean free path.

For Nb: ( 4.2 ) 27 (Å)l T K RRR= »

RRR is related to the thermal conductivity

For Nb: ( 4.2 ) / 4 ( )-1 -1W. m . KT K RRRl = »

At normal conducting 
and cryogenic state 
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Thermal Breakdown

Breakdown field given by
(very approximately):

4 ( )T c b
tb

d d
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k -=

κT: Thermal conductivity of Nb
Rd: Defect surface resistance
Tc: Critical temperature of Nb
Tb: Bath temperature
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Kim ORNL

Quenching pattern examples in the end group

during 
pulse

during gap
e-loadings 
around 
HOM 
antenna

e-loading 
at OC

Low RRR & long path to the thermal sink
Thermal margin is relatively small,
Intermediate stage at the end-group 
Results in thermal quench/gas burst
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Thermal Breakdown
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Rongli Geng

33

700 μm dia. defect in AES5

300 μm dia. defect in A15

JLab T-mapping and High-Resolution Optical Inspection

hot spot near equator EBW

Precursor T-jump
at quench location

Ciovati et al
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Multipacting
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Multipacting
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Multipacting

Multipacting is characterized by an exponential growth in the number of 
electrons in a cavity

Multipacting requires 2 conditions:

Electron motion is periodic (resonance condition)

Impact energy is such that secondary emission coefficient is >1
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Multipacting



38 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Secondary Emission in Niobium
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More Then Just Cell Mulitpacting
4 MP Locations in the 
SNS Cavity Observed:

Cell Equator

Input 
coupler

Beam pipe 
Transitions

HOM Hooks
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Separating MP and Field Emission 
Contributions to X-rays Observed
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Performance History DESY cavity experience

L. Lijie’s summary of DESY cavity databank, DESY, 2006
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Performance from my experience
• In the early 1990’s gradients were mainly limited around15MV/m 

vertical test and 10MV/m in machines
– Field emission dominated the performance
– Preparation procedure 

• Bulk removal BCP, RF tuning, Degreasing, Final light BCP, DI water rinsing, Assembly

• By the mid 1990’s high pressure rinse was established as a new 
cleaning method to reduce field emission

• Early 2000 
– Gradients had reached 20-25 MV/m vertical test which correlated to 

machine performance as well
– Electropolish chemistry was reintroduced and showed gradients could be 

pushed to 30-35MV/m

• Today the focus is on reproducibility with occasional 40MV/m 
performances
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Standard Process Generalized
• Heavy chemical etch (EP or BCP)

– Removal of damaged surface layer (100-150um) caused by fabrication and 
handling 

• Removal of surface contamination
– Ultrasonic cleaning of surface with detergent and DI water, heated and or
– Alcohol rinse of surface to remove chemical residues

• Heat treatment (600-800C in vacuum furnace)
– Removes hydrogen from the bulk niobium to reduce the risk of Q-disease 

• RF tuning and mechanical inspection
– Last chance to prepare cavity for operational use
– Field profile, calibration of test probes, check mechanical structure
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Standard Process Generalized cont.
• Removal of surface contamination

– Ultrasonic cleaning of surface with detergent and DI water, heated

• Light chemical etch (EP)
– Remove any risk from damage during handling and furnace contamination

• Removal of surface contamination (chemical residues)
– Ultrasonic cleaning
– Alcohol rinse

• High pressure rinse (UPW) + Class 10 drying of cavity
– Reduction of field emission sources, surface particulates
– At least two passes over entire surface
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Standard Process Generalized cont.

• Assembly of subcomponents (most hardware at this step)
– Process of connecting subcomponents to cavity openings
– Slow and careful steps, high level of attention to detail
– Ionized nitrogen gas blow off (cleaning) of subcomponents and hardware 
– Assembly optimized to reduce particulate contamination into cavity 

surface 

• High pressure rinse (UPW) + Class 10 drying of cavity
– Last chance to clean surface and remove particulates from first assembly
– Most critical cleaning step against field emission
– At least two passes over entire surface

• Assembly of subcomponents (final evacuation flange)
– Most critical assembly step no follow-up cleaning
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Heat treatment (600-800C)
Details

Temperature
of hot zone

Low end 600C Typical 800C

Vacuum Start 1e-7 Torr End 1e-5 Torr

Cavity 
cleaning

Typically -
degreasing

Sometimes-
Chemistry and 
HPR

Support 
structure 

Moly rails or 
rods

Automated 
controls

RGA, PLC

Process time 6-12 hrs or 
more
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Small Part Ultrasonic Cleaning Stations
• Rinse tank out
• Fill with DI water
• Add Liquid Detergent

– Liquinox
– Micro-90
– Few percent by 

volume
• Ultrasonic agitation

– 15-60 minutes
• Remove and rinse 

parts with DI water
• Blow dry 

– ionized nitrogen gas
– Laminar flow hepa air
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Ultrasonic cleaning

• Immersion of components in DI water and detergent medium

• Wave energy forms microscopic bubbles on component 
surfaces.  Bubbles collapse (cavitation) on surface loosening 
particulate matter. 

• Transducer provides high intensity ultrasonic fields that set up 
standing waves. Higher frequencies lowers the distance between 
nodes which produce less dead zones with no cavitation.

• Ultrasonic transducers are available in many different wave 
frequencies from 18 KHz to 120 KHz, the higher the frequency the 
lower the wave intensity.
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The Need For Material Removal
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Niobium Material Removal by Chemistry

Niobium surface after BCP Niobium surface after EP
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Hydrofluoric Acid Safety
• Hydrofluoric acid is an anomaly

– It does not react like all other acids once absorbed into the skin

– It absorbs deeply into skin, destroys everything in the path, then 
slowly releases into blood stream bonding all calcium

– Calcium is needed to control the hart cardiac arrest can result 
in 8 hours after the exposure

– Time to proper first aid (removal of and bonding of fluorine) is the 
most important detail and will determine the outcome

– Large exposures always lead to death even with first aid and 
medical treatment
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HF Safety cont.

• Before using HF
– Ensure the lab has a functioning safety shower
– Calcium gluconate cream or equivalent
– Proper PPE to cover all exposed skin
– Additional personnel trained in providing first aid and available

• Before using a System
– Review and understand the hazards
– Know what to do when an accident happens
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Buffered Chemical Polish (BCP)
Acid  =  HF (49%), HNO3 (65%), H3PO4 (85%)
Mixture 1:1:1 , or 1:1:2  by volume typical

Reaction:

Oxidation   
2Nb + 5HNO3 Nb205 + 5NO2

Reduction  
Nb2O5 + 6HF H2NbOF5 + NbO2F 0.5H2O + 1.5H2O 

NbO2F 0.5H2O + 4HF H2NbOF5 + 1.5H2O
Reaction exothermic!

Brown gas
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Use of BCP:

• 1:1:1 still used for etching of subcomponents (etch 
rates of 8um/min)

• 1:1:2 used for most cavity treatments
– Mixing necessary reaction products at surface
– Acid is usually cooled to 10-15C (1-3um/min) to control 

the reaction rate and Nb surface temperatures (reduce 
hydrogen absorption)

Dissolved Niobium in Acid (g/L) 

Etch rate 
(um/min)

Acid Wasted After 15g/L Nb 
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Effects of BCP on The Niobium Surface
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(BCP) Systems for Cavity Etching:

• Bulk & Final chemistry
– Bulk removal of (100-200um)
– Final removal of (5-20um) to 

remove any additional damage 
from QA steps and produce a 
fresh surface

Implementation:

• Cavity held vertically

• Closed loop flow through style process, some gravity fed system 
designs

• Etch rate 2X on iris then equator

• Temperature gradient causes increased etching from one end to 
the other

• Manually connected to the cavity but process usually automated

BCP Cabinet JLab
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Electropolish (EP)

Electrolyte  = 1 part HF(49%),  9 parts H2SO4 (96%)

Reaction:
Oxidation

2Nb +5SO4
2- + 5H2O Nb2O5 +10H+ +5SO4

2- +10e-

Reduction
Nb2O5 + 6HF H2NbOF5 + NbO2F 0.5H2O + 1.5H2O

NbO2F 0.5H2O + 4HF H2NbOF5 + 1.5H2O

Hydrogen Gas

These are not the only reactions that take 
place!
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Nb Surface Effects After EP
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50 μm 50 μm

BCP EP

Surface Roughness of Niobium
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Basic Concepts of EP
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• 0-V1- Concentration Polarization 
occurs, active dilution of niobium, 
electrolyte resistance

• V2-V3 – Limiting Current Density, 
viscous layer on niobium surface

• >V3 Additional Cathodic 
Processes Occur, oxygen gas 
generated

Al

Nb

I-V Curve

DC Power Supply
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Cavity IV Curve not easy to interpret
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Hydrogen Gas Shielding Experiment 
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Electropolishing of 9-cell Resonators 
(Nomura Plating & KEK)
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Electropolishing Systems JLAB
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Electropolishing Systems DESY
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High Pressure Rinsing:

• The need for HPR surface 
cleaning:
– Entire surface contaminated after 

chemistry, early field emission will 
result if not performed

– Effective at removing particulates 
on the surface after assembly 
steps

ISSUES:

• HPR systems are still not optimized for 
the best surface cleaning performance 
• Surface left in a vulnerable state, wet 

• This is still the best 
cleaning method against field 
emission!
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HPR spray heads needs to be optimized 
for a particular geometry!

Very effective on irises Equator fill with water too high flow 
rate

For a given pump displacement the nozzle opening diameter and 
number of nozzles sets the system pressure and flow rate
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Helium Processing 

• Variation of RF processing
• Keep pressure below discharge condition
• Run cavity in the field emission regime
• Push the gradient as high as the system allows
• The process in details is unknown

– Electron spraying from FE bombard surface ionization of helium at around 
surface destroy field emitter???

– Controlled processing is difficult
• Relying on field emitter locations and responses 

– Uniformity??
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Preliminary experimental setup in RFTF

805 MHz
500W 
CW amplifier

HB cavity

Gas feeding
manifold

Pump

First plasma in the SNS
HB cavity

300W forward
200W reflected
1e-4 torr
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Plasma cleaning

• Ablation
– Soft
– Etching

• Activation
• Crosslinking
• Deposition

Base 
material

contaminants

Ion, molecule (radical), electron

before

after
wettability
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AP Talk Feb 19 2009

Radiation (before and after processing)
Radiation reduced by factor of 5 to 100
Showed promising results for in-situ processing 

before after

Eacc=10 Eacc=10



75 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Integrated Process Automation 

The Need!
• Cryomodules are expensive ($M)

– Amount of hands-on labor
– Failure rates (sensitivity of performance to errors)
– Material costs (increasing with time, complexity of design)

• Machine energies are increasing
– Cryomodule numbers are increasing (100,s 1000’s)
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Integrated Process Automation

• There is hope however for reduction of failure rates and 
labor
– In my opinion “Vertical EP” may be the breakthrough we 

needed

– Now one can imagine combining many of the processes into a 
single process station or two
• Example

• Degreasing               Assembly
• Electropolish    Evacuation
• HPR                            Leak test
• Drying                        Baking
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