

Consortium

Ricerche

Helmholtz Zentrum Berlin Institute Competence Centre Photovoltaics Berlin (PVcomB) Berlin, Germany

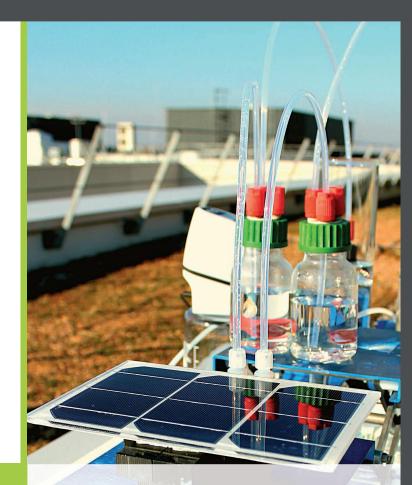
Catania, Italy Uppsala Universitet

Uppsala, Sweden

Consiglio Nazionalle delle

JÜLICH Forschungszentrum Jülich Jülich, Germany

Enel Green Power Catania, Italy


Contact

PROJECT COORDINATOR

Dr. Sonya Calnan Helmholtz Zentrum Berlin Institute Competence Centre Photovoltaics Berlin (PVcomB)

Schwarzschildstr. 3. 12489 Berlin sonya.calnan@helmholtz-berlin.de

PECSYS

Technology demonstration of large-scale photo-electrochemical system for solar hydrogen production

www.pecsys-horizon2020.eu

Project details

Call Topic: FCH-02-3-2016 Development of processes for direct production of hydrogen from sunlight

Start date: 01 Jan 2017

Duration: 4 years

"This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement 735218. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and N.ERGHY"

PECSYS

PECSYS is a research and innovation project aimed at demonstrating a system for solar driven electrochemical hydrogen generation. The final demonstrator consists of several planar modules with an active area >10 m² and is projected to produce more than 10 kg of hydrogen over a six month period.

The consortium will test various established PV materials (crystalline silicon heterojunction and copper indium gallium di-selenide, CIGS) and integrate them with established electrolyser technologies to develop innovative device concepts for integrated photo-electrochemical devices.

The focus is on solar-to-hydrogen (STH) conversion efficiency enhancement, scaling up and optimizing the long-term stability of these devices, beyond the current state of the art in terms of performance and cost.

Our Goals:

- Study and develop devices for integrated Photovoltaic - Electrolysis (PV-EC) hydrogen generation and scale viable concepts to prototype size > 100 cm².
- Use socio-techno-economic analysis to select concepts with levelised cost of hydrogen production below 5 €/kg.
- Scale the prototypes of the less mature but promising technologies to a demonstrator with an active area > 10 m².
- Achieve a hydrogen production of 16 g/h from the demonstrator with an STH efficiency of at least 6 %.
- Ensure that the initial demonstrator STH efficiency does not decrease by more than 10 % after six months of continuous operation.

Work Packages:

- WP1-Project coordination
- WP2 Silicon based approach
- WP3 CIGS based approach
- WP4 Cassette approach
- WP6 Device simulation / socio-technoeconomic-and life-cycle-analysis
- WP7 Prototype panel and field tests
- WP8 Project exploitation, dissemination and communication