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Workpackage objectives and main tasks

Objective: Understanding of the system in terms of technology development
and cost-potential. Technology potential will be screened based on band gap
and band energies calculations, which will be determined from photosensitivity
measurements.

A complete socio-techno-economic model based on cost and performance of
each essential component will be developed including BoP.

Task description

T 6.1 (UU) PV device simulation
T 6.2 (FZJ) EC device simulation

T 6.3 (HZB) Socio-Techno-Economic and life cycle analysis
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Explanation of the concept: modeling

" The main goal of the modeling is:
= Prediction of yearly hydrogen yield
= Distribution of hydrogen
production based on climate data
= Design rules for optimum match
between PV and EC part of the
device
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Explanation of the concept: weather data .:0.

8 Germany_PVOUT_mid-size-map_156x220mm-300dpi_v20191205.png
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= Hourly data for Julich
= Temperature, hourly average
= Solar irradiation [W/m?],
hourly average

Julich data
Year 2016

Long term average of PVOUT, period 1994-2018
Daily totals: 26 28 30 32 34

[ KWh/kWp
Yearly totals: 949 1022 1095 168 1241
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lJ JULICH

Forschungszentrum
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A thermally integrated device made up of a 2x3-cell CulnGaSe photovoltaic module (active
area ~ 82.3 cm?) and a FeNiOH (cathode)-FeNiOH (anode)-based alkaline electrolyser with
an electrode area of 100 cm? (a). The solar to hydrogen conversion efficiency (STH)
remains above 10 % for more than 1 hour at 1000 W/cm? without active temperature
control (b), resulting in an average hydrogen production rate of 5.74 mL/min.
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Explanation of the concept: PV part

Solar cell module, 3 interconnected
cells
Four different technologies

= CIGS (Solibro)

= Silicon heterojunction (HZB)

= Amorphous silicon tandem (Julich)

= Silicon PERT (ENEL green power)
Parameter fit as function of irradiation
and temperature to make a model
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Explanation of the concept: EC part

= Technologies

= ECJilich, PEM Pt-IrO, catalyst —~ 4} Temperature (°C) . :
= EC alkaline Fe-Ni-based, UU - B S
= ECCNR, alkaline Pt-IrO, catalyst < 3t 10 ’,’ )
" Parameter set: JV-data as a function of | 50 o .
temperature S of ¢ 70 o o
- s "
<P ” ] r
= 1 2 o -
=] & _
) . ’0 -
0 | e ® 7 i ™ - :
1.50 1.75 2.00

Applied voltage (V)
Example: EC part FZJ
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Simulation: Combining PV to alkaline EC (UU)
Varying temperature and irradiation

EC-UU
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Simulation: Combining PV to Pt based EC (FZ)) e
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WP6 — Accomplishments since May 2018 0,

PV-SRAB "'c W m-2
EC-FZJ

Cross over = proportional to
light intensity

-t
o

o

Good margin and
match between PV

Current density (mA cm*z)

0 and EC, also at low
0 05 1 1. 2 irradiance
Potential(V)
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WP6 — Accomplishments since May 2018
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Cross over = proportional to
light intensity
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No hydrogen production at
low irradiance
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Modelling outcomes (all for Jiilich data 2016)

" Energy yield and efficiency for PV

= Energy yield for different areas of PV-EC
(varying EC area)

= Solar to hydrogen (STH) efficiency
= Electricity to hydrogen (ETH) efficiency

" Assuming temperature for
PV=temperature for EC
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PV —EC (FZJ) Annual energy yield

PEM electrolyzer

Different catalyst areas (Ag.=x Ay) Different PV devices
EC Epy.ec for various A (kWh m2)
0.01 Ap\/ 0.1 Apv Apv 10 Apv 100 Ap\/
HZB_3cells
= — 117 117 117 117 High PV efficiency, good match to EC

SRAB_3cells o 114 119 119 119 119
ENEL 4cells 98 99 99 99 99 ngh PV efficiency, less good match to EC

FZ)_1cell 74 75 75 75 75 Lower PV efficiency, good match to EC

Very similar results down to 1 % EC compared to PV area
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PV —EC (UU) Annual energy yield 0,

Different catalyst areas (Ag-=x A,) alkaline electrolyzer

different PV devices
Ep\.ec for various Ag.
PV EC (kWh m™?)

SRAB 3ce11s

FZJ 1cell

Match in area between EC and PV device
Smaller area leads to loss of yearly yield
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The climatic response of thermally integrated photovoltaic-
electrolysis water splitting using Si and CIGS combined with acidic
and alkaline electrolysis

i. Bayrak Pehlivan?, U. Malm®, P. Neretnieks®, A. Gliisen, M. Mueller<, K. Welter¢, S. Haas, S. Calnand, A. Canino®, Rachela G.
Milazzof, S. M. S. Privitera’, S. A. Lombardo’, L. Stolt®, M. Edoff**, and T. Edvinsson®*

Abstract

The Horizon 2020 project PECSYS aims to build a large area demonstrator for hydrogen production from solar energy via
integrated photovoltaic (PV) and electrolysis systems of different types. In this study, Si- and CIGS-based photovoltaics are
developed together with three different electrolyzer systems for use in the corresponding integrated devices. The systems
are experimentally evaluated and a general model is developed to investigate the hydrogen yield under real climatic
conditions for various thin film and silicon PV technologies and electrolyser combinations. PV characteristics using Si
heterojunction (SHJ), thin film Culn«GaixSez, crystalline Si with passivated emitter rear totally diffused and thin film Si are
used together with temperature dependent catalyst load curves from both acidic and alkaline approaches. Electrolysis data
were collected from (i) an Pt-IrO>—based acidic and (i) a NiMoW-NiO-based and (iii) a Pt-Ni foam—based alkaline electrolysis
systems. The calculations were performed for mid-European climate data from Jilich, Germany, which will be the installation
site. The best systems show an electricity-to—hydrogen conversion efficiency of 74 % and over 12 % STH efficiencies using
both an acidic and alkaline approach and is validated with a smaller lab scale prototype. The results show that the lower
power delivered by all the PV technologies under low irradiation is balanced by the lower demand for overpotentials for all
the electrolysis approaches at these currents, with more or less retained solar-to-hydrogen (STH) efficiency over the full year
if the catalyst area is the same as the PV area for the alkaline approach. The total yield of hydrogen instead follows the
irradiance, where a yearly hydrogen production of over 35 kg can be achieved for a 10 m? integrated PV-electrolysis system
for several of the PV and electrolyser combinations that also allow a significant (100-fold) reduction in necessary electrolyser
area for the acidic approach. Measuring the catalysts systems under intermittant- and ramping conditions with different
temperatures, a 5% lowering of the yearly hydrogen yield is extracted for some of the catalysts systems while the Pt-Ni
foam—-based alkaline system showed uneffected or evern slighly increased yearly yield under the same conditions.

Zad PEC

Zentrum Berlin UPPSAL
‘if PVcomB UNIVERSITET



Combined Technoeconomic and Life Cycle Analysis 0% o
. Explfrirr;entalI data]c ) N (project’s own, databases)

* Tec n.o ogical configuration - Capacity sizing (kg-H,/day)

* Location J * Annual H,yield (kg-H,/year)

Included Omitted \ 4

[ I  LCOH target < 5 €/kg-H, 5| * Human health impact
Capital & operating costs * Sensitivity analysis « Materials (g/MJ-H,) « Environmental impact
* Profitability * Energy (MJ/MJ-H,) * Resource depletion
* Optimisation e Social impacts
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Main Results: Preliminary Technoeconomic Analysis

Hydrogen production capacity of 16g/h or 140 kg per year, 1 bar hydrogen, located in Jiilich, Germany

Units

Components in thermal contact

Detached and thermally isolated

SHJ PV /AEC CIGS PV /AEC SHJ PV /PEMEC CIGS PV /PEMEC

PV technology SHJ CIGS SHJ CIGS
Catalysts NiFeO|NiMo NiFeO|NiFeO IrO, | Pt IrO, | Pt

Actual design uses Ni

. plate Titanium and stainless steel Titanium and stainless
Electrolyser casing -/- Veroclear .
(calculations made plate steel plate

assuming Veroclear)

Membrane -/- Zirfon PERL Zirfon PERL N212 Nafion N212
Economic assessment (for 16g/h or ~140 kg/year capacity)

Annual CAPEX repayment €/kg-H, 6.47 9.52 6.12 3.96
Annual variable O&M costs €/kg-H, 0.20 0.20 0.35 0.35
Annual Fixed O&M costs €/kg-H, 0.25 0.41 0.16 0.10
LCOH annuity €/kg H, 6.92 10.14 6.63 4.41
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Main Results: Preliminary Technoeconomic Analysis

hydrogen production capacit
(@) Efficency | I () Eccasing |  I—— yerogen p pactty
of 16g/h or 140 kg per year
Interest T Efficiency [ [
EC casing s nterest  om = Cost of electrolyser components
dominate LCOH because there is
Catalyst & support WU . 55 reductio  Catalyst & support - = 5% rhduction no established supply chain for
°0 i .
Membrane [SHJ PV/AEC 1 " 251 increase Membrane FIGS PV/AECII m 25% increase these materials and components
0 10 : o 20 o a0 o 0 20 a0 similar to literature [1].
% change in LCOH % change in LCOH
= Reports considering commercial
(c) Efficiency e (d) Efficiency T electrolysers (LMW) indicate that
PV capex is more dominant []
Catalyst & support | [ I Catalyst & support - 1IIs
Interest I Interest B = The high impact of electrolyser
Membrane m Membrane m and/or PV efficiency is in
m 25% reduction m 25% reduction agreement with most studies [1,
ECcasing |SHJ PV /PEM Il =25%increase ECcasing | CIGS PV /PEM I ®=25%increase
-20 -1'0 (I) 1I0 20 -20 -1I0 6 1I0 20
% change in LCOH % change in LCOH [1] Grimm et al. (2020), International Journal of
Hydrogen Energy, 45 (43): 22545-22555.
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Main Results: Life Cycle Analysis approach

Methodology

Cell production

!

Module/stack production

e Software: OPENLCA

e Databases: ECOINVENT, NEEDS; missing data from own surveys or
literature
* Impact Assessment method: RECiPE 2016 (Hierarchical, GWP100)

e Scope limited to cradle to gate for PECSYS systems

. Transport
included excluded
* Lifecycle stages which are the same for all production --
pathways to be omitted e
* Gate to grave (end of life of H, generation systems)
omitted as there is insufficient knowledge of recycling

and disposal processes

Repair and re-use Use phase: H2 generation

———————————————

End of life
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Lifecycle analysis: energy and material flows

Life cycle analysis: Energy and material flows defined (essential flows to be identified)

Core system

Significant components

Anode, cathode, membrane, end plates, bipolar
plates, seals, fasteners

Steel, Ti, Ni, Pt, Ir, Fe, Mo;
PTFE; electricity, Nafion, Zirfon

emissions to the environment

Electrolyser stack Balance of

system

Pumps, compressor, purifiers

Materials to be determined from

literature

emissions to the environment

Process

Water; KOH (aq)

Hydrogen, oxygen, waste water

Core system

Photovoltaic

Photoabsorber, metallic and transparent contacts;
stringing ribbons, metalisation paste, glass

Si; Cu,In;Se, glass, EVA, PET;

Cu(Sn60Pb40), ITO, Ag, Mo; process [emissions to the environment

gases, electricity

module Balance of
system

detached system)

Mounting frame and fasteners, cables (for Structural steel, aluminium, stainless

steel

emissions to the environment

Process

Solar energy

Electricity

* Flows for SMR and grid electricity shall be identified using data in existing databases and literature
e Use of essential flows reduces complexity of the calculation
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Progress beyond state of the art and impact e

Progress beyond state of the art
=  PV-EC combined and thermally integrated devices simulated using real climate data
=  No matching electronics included
=  Yearly hydrogen yield is highly dependent on accurate matching between series connected PV and EC
=  Reduction of voltage and efficiency of PV with high device operating temperature partly mitigated by higher EC efficiency

=  Qur TEA and LCA for integrated (PV) solar hydrogen devices and directly coupled PV-electrolysis differes from the following previous
studies
i. That use hypothetical systems and not actual prototype measurements to validate models [1,2]

ii. Study for was limited to TEA of directly coupled PV/EC and temperature dependence of device efficiencies not (explicitly)
considered [2,3]

iii. Considers material and energy flows for the PV component in LCA unlike [4]
§
Expected impact
= Quantification of environmental as well as cost implications of directly coupled photovoltaic to water electrolysis systems

[1] Shaner et al. (2016), Energy Environ. Sci. 9: 2354-2371.

[2] Grimm et al. (2020), Int. Journal of Hydrogen Energy, 45 (43): 22545-22555.
[3] Yates et al., (2020), Cell Reports Physical Science 1:100209.

[4] Koj et al. (2015), Energy Procedia, 75:2871-2877.
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Conclusions and Outlook e

Conclusions

 Modeling shows importance of match for PV-EC device for optimum yearly yield

 TEA and LCA values of solar hydrogen generation technologies can only be taken as indications with ,large”
error bars because there is no established supply chain for materials and components

e Data for material and energy flows for the extraction and production of components (especially for the
electrolysers) are not yet available in life cycle inventory databases

 Preliminary LCOH similar to other studies of silcion PV directly coupled to electrolysis (6.22 USS/kg-H, [1]; ~4
USS/kg-H, [2]) but comparisons are difficult because of differing locations and system specifications

Outlook

* Update TEA results once experimental data becomes available
* Complete life cycle inventories for compressors, balance of plant
* C(Calculate and analyse life cycle impacts

* |dentify parameters for sensitivity analysis [1] Grimm et al. (2020), Int. Journal of Hydrogen Energy, 45 (43): 22545-22555.
[2] Yates et al., (2020), Cell Reports Physical Science 1:100209.
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Thank you for your attention!
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The project started on the 1%t of January 2017 with a duration of 48 months.
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@
Lifecycle analysis: H, production pathways under consideration o'.

» H, production pathways System boundaries for H, production pathways

i.  Steam methanol reforming (pending consideration) I —

ii. Grid electricity and PEM electrolysis

Electrolyser PV integrated Electrolyser

iii. Direct coupled PV and PEM electrolysis (PECSYS own)

Natural gas
extraction

iv. PV thermally integrated to alkaline electrolysis (PECSYS

Methane
production

own)

* Functional unit: 1MJ of H,

Separation & Purification

* Reference flow: system size for production of 1 kg of H,

Material and energy resources
Emissions to the environment

Compression

Life cycle impact categories S l------po--oooo-ooooo-ogo oo oo oo oo :

Transport and Delivery m

iii. Resource use: minerals, water, fossil fuels Data collection on-going

i Human health Storage

ii. Ecological consequences (GWP, eutrophication, acidification,

ozone depletion
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Technical assessment: Annual performance model %o

0%
P\é GtISbSarah CT;in plane (8) Epy (G, T;t)
ata base bient
Different from most models, ambien Model Vev (G, T,1)
Electrolyser is not operated at oy (G,T) PV PV
a fixed temperature, T¢c (T, 1) Vo (G,T) parameters behaviour =
> Curve fitting %
1. Discrete PV + discrete EC: E
Toy (G T,t) # Tec (Tt g
PV ( ) EC ( ) IEC (G,T) EC ::2
2. Integrated PV-EC with Ve (G,T) — parameters Model EC o
thermal integration: >| Curve fitting > : Vec (G, T ) =
behaviour I (Voo 1) =
Toy (G, T,t) # Tec (To1) LR
Except for near perfect
heat transfer between PV
and EC _
) Difference
Mz (6,T,1) model Coupling efficiency,
ncouple
Data from database Modelled data
mHZ (G/TIt)
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Methodology for economic analysis . :0‘

System capital cost (CAPEX) calculation: Ciife = + o(CAPEX, + OPEX)(1+1r)7!

A
CAPEX, = CAPEX, x (&) + ;. [EUR/kg-H,: lifetime cost

0

r [%]: annual discount rate for future cash flows = 5%
Q : the system’s capacity,

0: index for base (prototype),

x: index for new (scaled- up) capacity,
a: learning parameter = 0.4 [1,2].

n [years]: economic lifetime of the investment = 20

Annuity method
* Assumes constant annual payment over the economic service

lifetime
Assumptions for operating costs (OPEX) * Ignores inflation and its effects on costs and !ncome over time.
* Acceptable at prototype stage because cash inflows are

* Electricity for balance of plant = 0.151 EUR/kWh [3] unknown.

*  (KOH) cost = 2.511 EUR/kg [4] _ L r(1+nr)"

. Water cost = 0.020 EUR/kg [4] annuity factor, “a = A rrr—1
[1 B, van der Zwaan and A. Rabl, Solar Energy 74 (2003) 19. (C . Xa) m’ [kg/year]: amount of
21K, Schoots, et al., Int. ). Hydrogen Energy 33 (2008) 2630. LCOH — llfe hyd rogen produced in a year
Bl Average electricity cost for mid-sized industry in Germany , Eurostats, 2018. m’
81 W, Kuckshinrichs, et al, Frontiers in Energy Research 5(1),2017.
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