Modelling, experimentation and scaling of solar hydrogen generation devices

Saurabh Tembhurne, Isaac Holmes-Gentle, Clemens Suter, Sophia Haussener

Laboratory of Renewable Energy Sciences and Engineering, Institute of Mechanical Engineering, STI, EPFL, Switzerland

Photo-Electrochemical Approach

EPFL

1000

Thermal Integration

High electrochemical and power densities enabled by thermal integration

Thermal Integration

Thermal benefit

Conceptual Device Design

2D Modeling

- How to design a device that has never been considered before?
 - \rightarrow Coupled multi-physics simulations

Electromagnetic wave propagation Semiconductor charge conservation / transfer Electrodes/electrolyte charge conservation / transfer (Reactive) fluid flow Energy conservation / heat transfer

 $\rho C_p \mathbf{u} \cdot \nabla T = \nabla \cdot (k_{\rm th} \nabla T) + Q$ $Q = Q_{\rm W} + Q_{\rm TH} + Q_{\rm R} + Q_{\rm M} + Q_{\rm PV} + Q_{\rm EC}$

Efficiency improvement for varying operating conditions:

CPEC Design

• Implementation:

Output power of PEC at 474 kW/m²: 27 W Current density in electrolyzer component: 0.88 A/cm² Current density in photoabsorber component: 6.04 A/cm² Efficiency: 17.1% solar-to-fuel

Tembhurne, Nandjou, Haussener, Nature Energy, not 10,4038/s41560-019-0373-7, 2019

Leveque, Bader, Lipinski, Haussener, Optics Express, 24, 2016

Comparison

• Dynamic and online tool: - <u>http://specdc.epfl.ch/</u>

w/o multi-module demonstrations w/o multiple electrolyzer demonstrations

LEGEND									
Fill color - PV / photoabsorber material	Boundary color - EC material	Symbol shape - PV / photoabsorber and EC configuration							
All III-V	Rare metal-based (expensive)	0	2J, integrated PVs and catalyst	+	3J, integrated PVs and catalyst				
Partial III-V	Abundant (cheap)		2J, integrated PVs, wired catalyst	Δ	3J, integrated PVs, wired catalyst				
All Si			2J, non-integrated PVs or catalyst	0	3J, non-integrated PVs or catalyst				
Partial Si									
Oxides and others									

Comparison

• Dynamic and online tool: - <u>http://specdc.epfl.ch/</u>

w/o multi-module demonstrations w/o multiple electrolyzer demonstrations

LEGEND								
Fill color - PV / photoabsorber material	Boundary color - EC material	Symbol shape - PV / photoabsorber and EC configuration						
All III-V	Rare metal-based (expensive)	0	2J, integrated PVs and catalyst	+	3J, integrated PVs and catalyst			
Partial III-V	Abundant (cheap)		2J, integrated PVs, wired catalyst	Δ	3J, integrated PVs, wired catalyst			
All Si		\$	2J, non-integrated PVs or catalyst	0	3J, non-integrated PVs or catalyst			
Partial Si								
Oxides and others								

Tembhurne, Nandjou, Haussener, Nature Energy, doi: 10.1038/s41560-019-0373-7, 2019

Reactor and System in Operation

Integrated System Test

Full operation over multiple days in varying meteorological conditions •

Dynamic Process Model

• Generic system model developed in gPROMS ModelBuilder, parameters inspired by our installation

Temperature Dependence of Electrical Models

- Position of operating point heavily dependent on operating temperature (here shown for isothermal case)
- Behavior dependent on position of operating point relative to what we define as the "Temperature Stable Point" of the PV: $\left(\frac{dI_{PV}}{dT_{PV}} = 0\right)$

EPFL Tembhurne, Holmes-Gentle, Suter, Haussener, submitted, 2020

System Dynamics to Step Changes

- Dynamics in the electrical performance of the CPV and the EC originates from the changes in their operating temperatures
- Leads to non-linear behaviour operating point hysteresis
- Step change in flow rate $(3 \rightarrow 1 \text{ Lmin}^{-1})$:

http:\\www.sohhytec.com

Electricity/(Seasonal) storage

Beyond water splitting

Acknowledgements

sophia.haussener@epfl.ch http://lrese.epfl.ch http://specdo.epfl.ch http://specdc.epfl.ch http://solardish.epfl.ch

Swiss National Science Foundation

EPFL

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Energie BFE Swiss Federal Office of Energy SFOE

Open postdoc and phd positions, please apply!