

Practical Challenges in Scaling III-V Semiconductor-based Solar Hydrogen Systems

PECSYS (virtual) Workshop on Direct Production of Hydrogen from Sunlight

November 5, 2020

James L. Young, Ellis Klein, Myles Steiner, Randy Cortright, <u>Todd G. Deutsch</u>

Todd G. Deutsch, Ph.D. Senior Scientist Chemistry & Nanoscience Center National Renewable Energy Laboratory Golden, Colorado Todd.Deutsch@nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

U.S. DOE long-term research targets

DOE EERE Multi-Year Research, Development, and Demonstration Plan					
Table 3.1.8 Technical Targets: Photoelectrochemical Hydrogen Production: Photoelectrode System with Solar Concentration ^a					
Characteristics	Units	2011 Status	2015 Target	2020 Target	Ultimate Target
Photoelectrochemical Hydrogen Cost ^b	\$/kg	NA	17.30	5.70	2.10
Capital cost of Concentrator & PEC Receiver (non-installed, no electrode) ^c	\$/m ²	NA	200	124	63
Annual Electrode Cost per TPD H ₂ ^d	\$/ yr-TPDH ₂	NA	2.0M	255K	14K
Solar to Hydrogen (STH) Energy Conversion Ratio ^{e, f}	%	4 to 12%	15	20	25
1-Sun Hydrogen Production Rate ⁹	kg/s per m ²	3.3E-7	1.2E-6	1.6E-6	2.0E-6

Techno-economic analysis for a type 4 (10x concentrator) PEC reactor

 Solar-to-hydrogen efficiency is the largest lever to reduce H₂ costs according to techno-economic analysis*

*within the optimistic cost and lifetime values modeled

Best research photovoltaic cell efficiencies

Look to PV efficiencies for PEC materials

III-V synthesis

Metal organic chemical vapor deposition (MOCVD)

- NREL's III-V group
- Atmospheric pressure in hydrogen carrier gas (6 SLPM!!!)
- o Triethylgallium, Arsine, Trimethylindium, Phosphine, Dimethylhydrazine
- 700°C heated p-GaAs substrate (\$10,000/m²)
- Single-crystal epilayer films 4-5 μm thick

Stacked tandem spectral splitting

IMM spectral splitting

NATIONAL RENEWABLE ENERGY LABORATORY

6

Buried junction to improve Voc

Insufficient durability

- III-V stability is a major problem
- Inverted metamorphic form-factor has additional degradation pathways
- Surface modifications to impart stability are inadequate
 - Nitridation-sputtering of PtRu; Atomic layer deposition (ALD) of protective film; Protective and catalytic application of 2D materials – molybdenum disulfide (MoS₂); Engineered epitaxial capping layer
- Several days to grow and process each III-V sample
 - \circ ~\$50,000/m² replacing after a couple hours is not feasible

Best durability so far

- GalnAsP (1.7eV) lattice matched on GaAs (1.4eV) – inverted but not metamorphic
- MoS₂ applied by Jaramillo group (Stanford)
- Short-circuit testing in 0.5M H₂SO₄
- Failed at 12 hours, corrosion initiating at pinhole defect.

Evolution: Defect to destruction

Mirror image: observing reflection

Approximately hours 8-10, 5-minute photo intervals

NATIONAL RENEWABLE ENERGY LABORATORY

Photoreactor testing

Photoreactor demonstration

Incorporate most efficient and stable material in a photoreactor on a tracker and demonstrate 8 hours of continuous operation in sunlight with a cumulative production of at least 3 standard liters of H₂ (Sept 2017)

- To get 3 standard liters of H₂ in 8 hours need
 - 8 cm² of IMM absorbers @ 15% STH efficiency, 100 % Faradaic efficiency
 - Two or three photoreactors on solar tracker
 - 10x optical concentration (lens cost \$4400/m²)
 - Reasonable durability
 - Sunlight

 J (mA/cm^2)
 Area (cm^2)
 Time (min)
 Temp(K)
 Pressure(atm)
 Moles H2
 Volume(ml) H2

 125
 8
 480
 273
 1
 0.149
 3343

Multi-physics modeling of 10x concentrator cells and prototype fabrication for on-sun measurements

Modeling of PEC reactor shows 10x concentration is feasible; pressurization to inhibit bubbles is not

COMSOL on NREL's supercomputer (Anthony Abel)

- Laminar flow in PEC chamber
- H₂ concentration
- Optical path through electrolyte
 - o ≤5 mm electrolyte thickness
- H⁺ / HSO₄⁻ distribution
 - Potential drop through electrolyte ~300 mV
- Overvoltage
 - ~80 mV (HER) + ~220 mV (OER) + 300 mV (solution)
 - Total voltage necessary = ~1.85 V

Only first 30 mm include generation: flow left → right 30 mm/s (avg) Minimum pressure to keep hydrogen in solution : **147 atm**

Using pressure to keep H_2 from bubbling and scattering light is not feasible under these conditions

Prototype chassis machined from PMMA Concentration via Fresnel lens mounted to reactor

NATIONAL RENEWABLE ENERGY LABORATORY

Photoreactor: H₂ production context

3 standard liters of H₂

 $3 l H_2 * \frac{mol H_2}{22.4 l H_2} * \frac{2 mol e}{mol H_2} * \frac{96485 C}{mol e} * \frac{Ah}{3600 C} = 7.18 Ah$ Would propel a fuel cell vehicle how far?

 $3 \, l \, H_2 \, * \, \frac{mol \, H_2}{22.4 \, l \, H_2} * \, \frac{0.002 \, kg \, H_2}{mol \, H_2} * \, \frac{70 \, miles}{kg \, H_2} * \, \frac{5280 \, ft}{mile} = 99 \, ft = 30 \, m$

Context

 How large an area for a 10% STH system (~8 mA/cm²) to generate 1kg H₂ in an 8-hour day?

 $\frac{8 mC}{s \cdot cm^2} * \frac{1 C}{1000 mC} * \frac{3600 s}{h} * \frac{1 mol e}{96485 C} * \frac{1 mol H_2}{2 mol e} * \frac{0.002 kg H_2}{1 mol H_2} * \frac{10,000 cm^2}{m^2}$ $= 0.00302 \frac{kg H_2}{m^2 \cdot h}$

$$0.00302 \ \frac{kg \ H_2}{m^2 \cdot h} * 8 \ h = 0.0242 \ \frac{kg \ H_2}{m^2}$$

$$41.3 \ \frac{m^2}{kg H_2}$$

Integrated (encapsulated) PV electrolysis

- Design electrolysis components that target >500 mA at 2 V
 - Cathode size not an issue
 - Widening channel improved performance
 - Cathode placement is critical, even in 3M H₂SO₄

Anode issues

Oxygen evolution from water oxidation in 3M H₂SO₄

- RuOx anodes are highly active, but unstable in acid
- \circ IrO₂ based catalyst coated on Ti mesh
 - Provided by Water Star Inc.

Cathode issues

- Hydrogen evolution from proton reduction in 3M H₂SO₄
 - \circ H₂ bubbles stuck to cathode
 - Pumping, channel redesign
 - Pt flags, Pt black, Pt mesh
 Pressure, surfactant

NATIONAL RENEWABLE ENERGY LABORATORY

Integrated PV/PEM electrolysis

- Only solution to bubbles was to use membrane electrode assemblies (MEA)
 - High water splitting current densities at low bias
 - Stable output (no bubble issues)
 - Deionized water is the reactant

Fully processed PV

- Window layer, contact layer, metal contacts, AR-coating, helium cooled
- \circ 1.8 eV GaInP₂ on 1.2 eV InGaAs
- Four arrays, each with four 1 cm x 1 cm cells

Time-lapse outdoor run

Outdoor performance

Summary

III-V inverted metamorphic multijunctions

- Increased efficiency
- Durability is compromised
- Cost is prohibitive

Photoreactor scale up

- $_{\odot}$ PEC instability prevents scale up of III-Vs
- Practical challenges
 - Ionic transport, bubbles, thermal management
- Still a long way from significant scale

Acknowledgements

• Funding: US DOE EERE

- o DE-FOA-0000826
- Project Partners
 - o NREL
 - PEC: John Turner, James Young, Henning Döscher
 - III-V synthesis: Myles Steiner, Dan Friedman, John Geisz, Ryan France, Waldo Olavarria
 - Photoreactor: Ellis Klein
- Collaborators
 - o Stanford
 - Tom Jaramillo, Reuben Britto

Thank You