JR Galan-Mascaros Institute of Chemical Research of Catalonia (ICIQ) Tarragona, Spain

Artificial photosynthesis

Highest energy density Renewable Easy to transport Most industries depend on fossil fuels

Advantages of fuels

High energy density Easy to transport Completely stable Reliable, easy set-up

	MJ/L	MJ/Kg
Uranium	>109	>108
Gasoline	34	46
Coal	≈38	≈30
ane (liquified)	22	55
Wood	≈13	≈16
H ₂ (700 bar)	9	142
Li battery	<2.6	<0.9
Alkaline	<1.3	<0.6
acid battery	0.56	0.17

THE ADVERSARY

Fossil fuels (again)

- Minimum price! 1-3\$/Kg (500 L)
- Well-established and reliable industry
- Profitable industry

\$60.91/barrel of oil (by March 14th 2018))

- Massive production scale! (5000 m³ methane / hour)

Artificial photosynthesis (2)

This is the highest STH efficiency reported to date and the first solar water splitting system that demonstrates a STH efficiency reaching 30% or higher.

> STH efficiency through the 48 h experiment. The operating current decreased by only 10% over this period

> > Jaramillo, T. F. et al. Nat. Commun. 2016, 7, 13237.

Artificial photosynthesis (technological requirements)

- Efficient
- Fast
- Robust (10 years)
- Abundant materials
- Scalable processes
- Economically profitable (?)

8

The objective

Use-inspired Basic research UNDERSTANDING

Surface science

- Modeling
- Mechanisms
- Interfaces

- Efficient and fast
- Robust (10 years?)
- Earth abundant materials
- Scalable processes
- Economically competitive (with fossil fuels!)

Applied research TECHNOLOGY

A-LEAF: Collaborative project

A-LEAF: Collaborative project

SPAIN

FRANCE

NETHERLANDS

GERMANY

SWITZERLAND

ITALY

01

USTRU

11

11

A-LEAF: Target integrated prototype

CO₂ → CO, CH₄, H₂, C₂H₂, HCOOH, CH₃COOH, hydrocarbons, alcohols, oxygenates

1+: Optimizing CRC catalysts

Dr. A. Martín-Fernández

a-leaf ChemSusChem. 2019, 12, 3501; Nat. Commun. 2018, 9, 1477; ACS Catal. 2018, 8, 837.

Raw material: Cu Target product: *formate*

1: Characterising CRC catalysts

Gas diffusion layers are a porous material composed of a dense array of carbon fibers, which also provides an electrically conductive pathway for current collection.

Angew. Chem. Int. Ed. 2019, 58, 10295

CRC catalysts: Copper-based nanostructures which provide high activity although medium selectivity.

Prof. N. López IC Institute of Chemical Research of Catalonia

Universiteit Leiden

ACS Energy Lett. 2020, 5, 3176 ;ACS Catal. 2018, 8, 9359tt

2: OER catalysts

Prof. J. Lloret-Fillol & JR

Fe, Ni, Zn

McCrory, C. C. L. et al. J. Am. Chem. Soc, 2013, 135, 16977–16987

ACS Appl. Energy Mater. 2019, 2, 8930

2+: Characterising OER catalysts

Surface doping

Nanostructuration

instituto Marcea nanociencia

SC LAB

6825447

100 1136 12 (1307)

Prof. U. Diebold

Prof. D. Écija

J. Chem. Phys. 2019, 151, 154702

2++: Characterising OER catalysts

Electrochemical correlations

a-leaf Mater. Adv. **2020**, 1, 1202; ACS Energy Lett. **2019**, 4, 337

Prof. S. Giménez

2++++: Understanding OER catalysts

Reaction mechanism from experiment AND theory

Chem. Sci., 2020, 11, 2464; J. Phys. Chem. Lett., 2018, 9, 7153

Imperial College London

3: Photovoltaics

Raw material: Si

Dr. T. Merdzhanova & Dr. V. Smirnov

Prof. F. Finger

>15% sun to power conversion

Mater. Adv. **2020**, 1, 1202;

Prof. F. Jaouen

Prof. S. Perathoner

UNIVERSITÀ DI MESSINA

Cell design and construction

Use-inspired Basic research UNDERSTANDING

• Surface science

- Modeling
- Mechanisms
- Interfaces

- Efficient and fast

Applied research TECHNOLOGY

Economically competitive (with fossil fuels!)

covestro

Only earth abundant materials

Raw materials	Main global producers (average 2010-2014)	Main importers to the EU (average 2010-2014)	Sources of EU supply (average 2010-2014)
Cobalt	Democratic Republic of Congo (64%) China (5%) Canada (5%)	Russia (91%) Democratic Republic of Congo (7%)	Finland (66%) Russia (31%)

viable, scalable, affordable

- Only earth abundant materials
- Scalable processes (industry-ready)

viable, scalable, affordable

Source: TMR Analysis, June 2016

- Only earth abundant materials
- Scalable processes (industry-ready)
- Integration
- **Optimization of the whole, NOT of the parts**

viable, scalable, affordable

- Only earth abundant materials
- Scalable processes (industry-ready)
- Integration
- Economically reasonable?

sas outlet

A-LEAF device performance targets (2021)

gas inlet

viable, scalable, affordable

- Advance the field of artificial photosynthesis
- Increase its critical mass and society awareness
- Facilitate the next generation of experts
- Consolidate the European Research landscape in renewable energy vectors

28

For more information: http://www.a-leaf.eu/

@aleaf_h2020

@aleaf.h2020

*** CIQ Institut Català d'Investig

Imperial College London

