

SILICON HETEROJUNCTION METALLIZATION AND MODULES APPROACHES

<u>A. Faes¹</u>^{*}, M. Despeisse¹, J. Levrat¹, J. Champliaud¹, A. Lachowicz¹, J. Geissbühler¹, N. Badel¹, J. Horzel¹, H. Watanabe¹, J.-W. Schüttauf¹, T. Söderström², Y. Yao², J. Ufheil², P. Papet³, B. Strahm³, J. Hermans⁴, A. Tomasi⁵, Y. Baumgartner⁵, J. Cattin⁵, M. Kiaee⁵, A. Hessler-Wyser⁵, M. A. Modestino⁵, J. Fleischer⁶, P.V. Fleischer⁶, A. Tsuno⁷, C. Ballif^{1,5}.

- 1. CSEM PV-Center, Neuchâtel, Switzerland, Tel : +41 32 720 56 33, *Contact: antonin.faes@csem.ch
- 2. Meyer Burger AG, Thun, Switzerland.
- 3. Meyer Burger Research, Hauterive, Switzerland.
- 4. Meyer Burger B.V., Eindhoven, Netherlands.
- 5. EPFL, PV-Lab, Neuchâtel, Switzerland.
- 6. PVF-Vertriebs GmbH, Neufinsing, Germany.
- 7. NAMICS Corporation, Niigata City, Japan.

Si Heterojunction Cells: Fabrication Sequence

How to have high bulk conductivity with low process temperature (<230°C)?

Metallization

Metallization Platform at CSEM

Metallization

csem

Confocal images of print done with the 20 μm opening

Spreading = $34 \pm 4 \mu m$ Height = $6 \pm 2 \mu m$

Line resistance <4 Ω/cm

HERCULES

Confocal images of print done with the 65 μm opening

Spreading = $80 \pm 5 \mu m$ Height = $25 \pm 2 \mu m$

Line resistance <0.35 Ω/cm

Bulk resistivity ~ 5 - 7 $\mu\Omega$.cm

210°C 30min

Tests were made with MICRON®-screens by PVF Copyright 2016 CSEM | Silicon Heterojunction Metallization and Modules Approaches | Page 4

Metallization

Paste and Print results

Copper paste

- Copper-based paste for Screen-printing from NAMICS Corp.
- Finger spreading = 59 μm
 Finger height = 14.5 μm

256

192

• Finger line resistance = 4.5 Ω /cm

Bulk resistivity ~ 23 μΩ.cm 210°C 30min in N₂

128

Copper plating: equipment + process

Pilot-demo vertical line

- Direct plating, Light induced plating, plating on seed
- Bifacial plating
- Ni, Cu, Sn, Ag plating solution

Pixdro LP50 Multi-nozzle

Metallization

Ag Ink-jet printing

Direct metallization

- Printing strategies optimization
- 35 μm width finger (thin deposit)
- 60 μm width finger with aspect ratio of 0.7
- Resistivity: \circ 320 $\mu\Omega$.cm after 20 min at 100°C

 $^\circ$ 6 $\mu\Omega.cm$ after 60 min at 200°C

Cost of nano-ink is relatively high

Bulk resistivity ~ 6 $\mu\Omega$.cm

200°C 60 min

Summary Metallization for SHJ Solar Cell

- Cu plating : fine line with high conductivity
- Inkjet printing: cannot go below $1 \Omega/cm$

What will happen in the module?

Metallization Optical Gain

Ag price = 501 €/kg (07.10.2016)

▲ HERCULES

•••

Copyright 2016 CSEM | Silicon Heterojunction Metallization and Modules Approaches | Page 12

SmartWire

SmartWire Concept

Copyright 2016 CSEM | Silicon Heterojunction Metallization and Modules Approaches | Page 13

Print for SmartWire

50

40

30

20

10

Screen-Printing in Pilot Production

Cost of silver* for 55 mg/water of silv paste = 0.6 €ct/Wp (1.7 €/module)

Silver price = 501 €/kg (07.10.2016)

Copyright 2016 CSEM | Silicon Heterojunction Metallization and Modules Approaches | Page 14

22,10

22 15

22.20

22 25

22 30

Eta [%]

22.40

22 45

22.50

22 55

22,60

0 22,70 22,65

0%

22.00

22.05

Busbar-less cells and SmartWire module

Metallization	Cell Efficiency [*] (%)	Module Reliability	-
Ag Screen-printing	22.7	4x IEC standard	Record power
Cu Screen-printing	22.4	1x IEC standard	HJT = 330 Wp
Cu plating	22.8	2x IEC standard	MEYER BURGER
Inkjet printing	22.4	1x IEC standard	

• 1x IEC standard \rightarrow

HERCULES

•••

- 200 Thermocycling between -40°C and +85°C
- 1000 hours in damp-heat 85°C and 85% relative humidity

*Cell Efficiency measured with GridTouch

Copyright 2016 CSEM | Silicon Heterojunction Metallization and Modules Approaches | Page 15

How to further reduce cost?

No Indium

271.442°C

(Bi)-

New Indium-free coating for SmartWire

Price cheaper than InSn ⇒ only 0.25 €ct/Wp

> 231.9681 ŝ

femperature 150 (ßSn)

- **BiSn-based solder**
- CTE close to pure Cu

Cu wire

- BiSn contact to Cu:
 - Cu₃Sn
 - Cu₆Sn₅

Ag paste

Det WD

BSE 9.0 292

ec.V Spot Magn

0.0 kV 3.0 500x

Atomic Percent Bismuth

Weight Percent Bismuth

L

	FF	lsc	Voc	Pmax
Module	(%)	(A)	(V)	(W)
60 cells	77.2	9.01	44.1	307

Pass 3x IEC 600TC & 3000h DH

With less that 3% degradation in power

50 µm

Si

How to remove cell metallization?

T	omorrow	v moo	Ju	les

No Metallization

 Direct contact between InSn wire coating and TCO from the cell

Irradiance	Voc (V)	Jsc (mA.cm ⁻²)	Module eff (%) FF (%)
200 W/m ²	0.696	7.73	20.6	77.8
450 W/m ²	0.714	17.40	20.7	76.5
1000 W/m ²	0.734	37.30	19.9	74.0

Module without metallization at 19.9 % eff.

CSEM acknowledge Choshu Industry Co for cell precursors Copyright 2016 CSEM | Silicon Heterojunction Metallization and Modules Approaches | Page 19

How to remove wire or ribbon interconnection?

No Ribbons nor Wires

Module with Shingle Cell Interconnection

Solar Water Splitting

based on Si PV & earth-abundant components

CSEM HERCULES

•••

[1] J.-W. Schüttauf, JECS 163 (10) F1177-F1181 (2016).

Copyright 2016 CSEM | Silicon Heterojunction Metallization and Modules Approaches | Page 22

Conclusions

- **CSEM** metallization platform
 - Copper plating
 - Silver screen-printing
 - Silver inkjet printing
- **CTM gain** for metallization shadowing
- **SmartWire** reduces metallization cost and increases module efficiency
- Indium-free SmartWire for further cost reduction
- Module without cell metallization
- Module without ribbon or wire interconnection
- World record for solar water splitting based on Si PV & earth-abundant components

Acknowledgments

- European Union's Seventh Programme for research with funding of the HERCULES project
- Swiss Commission for Technology and Innovation with funding of the SmartWire and of DEFIA project
- Swiss Federal Office of Energy with funding of the Swiss Inno HJT project
- Choshu Industry Co, for cell precursors
- PVF-Vertriebs for the screen manufacturing and funding
- All co-authors for the work

CSEM antonin.faes@csem.ch

Hank You for Your attemtion

MII

WA