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The BESSY Raytrace Program RAY

F. Schäfers

Abstract. The raytracing program RAY simulates the imaging properties of an
optical system. It randomly creates a set of rays within various types of light sources
and traces them according to the laws of geometric optics through optical elements
onto image planes. The distribution of the rays at the source, optical elements and
image planes can be displayed.

A ray is described not only by its coordinates with respect to a suitable coor-
dinate system, but also by its energy and its polarisation determined by the Stokes
vector. Different source types are implemented with special emphasis on a realis-
tic simulation of source intensity, volume and emission characteristics, especially
for synchrotron radiation including dipole and undulator sources. Optical elements
can be reflection mirrors of nearly any figure (plane, cylindrical, spherical, aspher-
ical. . . ), gratings, zone plates, foils or crystals. The absolute transmission of the
optics including the effect of optical (multilayered) coatings is calculated according
to the reflection/refraction/transmission process from the optical constants of the
materials involved. The influence of misalignment of the source and/or the optical
elements, slope errors and thermal deformation of the optics can also be taken into
account. A graphical display of spot patterns at any position of the beam, intensity
and angular distributions, absolute flux, polarisation, energy resolution is possible.

2.1 Introduction

The development of the raytracing program RAY was started at BESSY
in 1984 for basic raytracing calculations of VUV- and soft X-ray optical
schemes [1]. Since that time RAY has been in continuous evolution and it has
grown into a widely used design tool for synchrotron radiation beamlines as
well as for other optical systems. Most of the BESSY I monochromators have
been designed using RAY. To meet the requirements of the new undulator-
based third generation storage ring BESSY II, many new features have been
implemented into the code in the last 10 years such that RAY now has become
an indispensable tool for modern beamline design. Its capabilities are simi-
lar to the widely used SHADOW–XOP program [2,3]. Considerable effort has



10 F. Schäfers

been made to ensure that it is a user friendly, easy accessable and easy-to-learn
program for everyday use with a minimum effort on data and file handling.

Alternative to these programs based on intensity distributions and geo-
metric optics, wavefront propagation codes have been developed such as
PHASE [4], which applies the Stationary Phase Approximation and SRW [5]
employing Fourier Optics, which on the basis of the complex electric field
of the radiation are able to intrinsically take into account interference and
coherence effects. These codes are treated separately in this book [6].

This report is intended to be a practical reference and to give an outline
of the underlying geometrical, mathematical, physical and optical principles
which can be found in textbooks [7–9] or synchrotron radiation handbooks
[10]. In particular, Chap. 3.2 of [10] (Ray tracing) is strongly recommended
as an introductory guide before calculating a real beamline design. Here the
procedure, problems, limitations and the importance of checking the raytrace
results for the various kinds of errors that can occur are discussed. Various
specific RAY-features have been described previously: crystal optics in [11]
and zoneplate optics employing Fresnel diffraction where the collective effects
are treated on a statistical (Monte Carlo) basis [12, 13]. Extended manuals
for RAY [14] and the reflectivity program REFLEC [15] which share the
same optics software library are also available. Examples for the use of the
program in a variety of synchrotron radiation applications are given in [16]:
plane grating monochromator (PGM-) beamlines, [17] IR-beamlines, [18] ellip-
tical undulator beamlines, [19] gradient crystal monochromators, [20] μ-focus
X-ray beamline.

Chapter 3 explains the basic statistical treatment to simulate any kind
of intensity patterns, while the next chapters describe the simulation of
sources (Chap. 4), optical elements (Chap. 5) and of the treatment of absolute
reflectivity and polarisation (Chap. 6).

In Chap. 7 crystal diffraction optics employing dynamical theory is
described. Looking ahead, in ‘Outlook’, the time evolution of the rays to
describe wave, coherence and interference phenomena is discussed (Chap. 8).
This extension of the program and the implementation of the zoneplate
optics [12, 13] have been made possible by support through the COST-P7
action and intensive discussions during the COST meetings.

The complete code is available as a PC-Windows version.

2.2 Beamline Design and Modelling

The raytracing program RAY simulates the imaging and focussing properties
of an optical system. It randomly creates a set of rays within various types of
light sources and traces them through one or more optical elements on image
planes. The geometric distribution of the rays at the source, at all optical
elements and at the image planes can be visualized.
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Fig. 2.1. BESSY soft X-ray computational tools and their interplay

Various interesting features like focal properties, power distribution, energy
resolution, rocking curves, absolute transmission and polarisation characteris-
tics of an optical setup are simulated. It combines pure geometrical raytracing
with calculations of the absolute transmission and is, thus, a central and
indispensable part of the BESSY software tools for the design and opti-
mization of new monochromators and beamlines from the infrared spectral
region to the hard X-ray range. The interplay of the software tools available
at BESSY [21,22], is demonstrated in Fig. 2.1 as a flowchart.

Special emphasis was put on realistic simulations of beamlines, in partic-
ular those employing synchrotron radiation: the path of the photons can be
followed from any source, including bending magnets and insertion devices
via reflection/diffraction/transmission at optical elements through apertures,
entrance and/or exit slits on the sample. The influence of slope errors, surface
roughness, thermal bumps, measured or calculated surface profiles as well as
a misalignment of the source and optical elements can be studied in a simple
way. Thus, it is possible to predict the real performance of the beamline under
realistic conditions and to specify the requirements for all the components to
be ordered.

In a well defined source volume, rays are created within a given hori-
zontal and vertical divergence. Each ray has the same intrinsic probability.
The spatial and angular intensity distribution of the source is given by the
spatial and angular density of the rays (i.e. rays per volume and solid angle).
Thus, the outgoing rays simulate the intensity distribution of the correspond-
ing source. The rays are traced according to geometrical optics through one
or more optical elements (mirrors, gratings, foils, crystals, slits, zoneplates)
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of which the surface can have nearly any figure such as plane, cylindrical,
spherical, toroidal, paraboloidal or ellipsoidal and can be arranged in any
geometry (horizontal, vertical, oblique). The absolute transmission of the
optics including the effect of (multilayer-) coatings is calculated according
to the reflection/refraction/transmission/diffraction processes from the opti-
cal constants of the involved materials. Special monochromator mounts and
(coma-corrected) varied line-spacing (VLS-) gratings and (graded) crystals
with automatic calculation of structure factors can also be handled.

A ray is determined not only by its coordinates with respect to a suit-
able coordinate system (e.g. by its starting point) and by its direction,
but also by its energy E, its polarisation, described by the Stokes vector
S = (S0, S1, S2, S3), and its pathlength. Thus, a ray is described by 12 param-
eters, which are traced through the optical setup and for which the geometrical
and optical modifications are calculated according to its interaction with the
optical coating (reflection/refraction/transmission). Since all rays have equal
probability (the intensity of a ray, S0, is either 1 or 0), the throughput of
a beamline is simply given by the number of rays, for SR-sources multiplied
with the absolute photon flux as scaling factor.

For a first overview of the focal properties of an optical system, the hori-
zontal and vertical widths of the beam can be visualized along the beam path
for the determination of the focus position. At any position along the beam
path image planes can be defined. The footprints of the rays on the optical
elements and the focal properties of the optical system are analyzed and are
visualized graphically as point diagrams, 2D or 3D intensity distributions etc.

The menu-driven program is user friendly and so a first-performance test
of an optical design can be gained rapidly without any file handling. Once the
beamline has been defined the parameters are stored and can be modified in a
subsequent run. The graphics output is directed to monitors, printers, or PS
or EPS-files, and alternatively ASCII-data tables of all results can be created
for further data evaluation and display.

A flowchart of the program is shown in Fig. 2.2.

2.3 Statistics: Basic Laws of RAY

2.3.1 All Rays have Equal Probability

To simulate realistic intensity patterns on optical elements and image planes
(e.g. for heat load studies) it is necessary to create the source points and the
rays in such a way that the same intensity is attributed to each ray.

Generally there are two possibilities:

• A systematic distribution of the rays within the source so that the real
emission characteristic is simulated. For this a large number of rays is
required and needs to be calculated before an optical setup is completely
described.
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Fig. 2.2. Flow chart of RAY

• The rays are distributed statistically within the source so that within the
statistical error the real emission characteristic is simulated. The intensity
distribution of the source is thus understood as the probability distribution
of the necessary parameters, namely position and angle. The main advan-
tages of this Monto–Carlo procedure are its simplicity and the fact that a
calculation of relatively few rays already is enough to create a reasonable
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simulation of the optics. When the statistics and the accuracy seem to
be sufficient, the calculation can always be interrupted without making a
systematic error.

This second option is realized in RAY. The procedure is as follows:

1. Create a random number ran1 between 0 and 1.
2. Scale the corresponding variable, e.g. the x-coordinate of the source point:

x = (ran1 − 0.5) dx, (2.1)

where dx is the source-dimension in the x-direction.
3. Calculate the probability, w, of this randomly chosen start value for x (nor-

malized to a maximum value of 1), for example the electron density in a
dipole-source (gaussian profile w(x) = exp(−x2/(2σ2

y)) or the synchrotron
radiation intensity for a fixed wavelength at a definite horizontal and
vertical emission angle (Schwinger theory [23]).

4. Create a second random number ran2. The ray is accepted only if the
difference of the probability w(x) and this new random number is larger
than zero:

w (x) − ran2 > 0. (2.2)

5. If the difference is less than zero neglect this ray and start again with a
new one according to (2.1).

2.3.2 All Rays are Independent, but. . . (Particles and Waves)

All rays are independent, and so they are considered as individual particles
not knowing anything about each other. Thus, RAY works exclusively in the
particle model. Nevertheless, the statistical method explained above is an
elegant way to overcome the particle–wave dualism and to simulate wave
phenomena and collective effects such as interference, diffraction, coherence
and wave fronts.

This is done by a statistical treatment of an ensemble of individual rays
which behave within the statistical errors as a collective unit, as a wavefront.

This random selection of a parameter is used extensively throughout the
program not only to simulate the emission characteristics of a light source,
but also, for example, to simulate the reflection angle on a mirror to simulate
slope errors that are assumed to be gaussian. It is used to simulate reflection
losses of rays where w(x) = R with (0 < R < 1) by which the surviving ray
is assigned a probability of 1.

Furthermore, it is applied to simulate diffraction effects on slits for which
the outgoing beam direction is modulated by a sin v/v term for the case of
rectangular slits or by a bessel function for the case of circular slits.

The same diffraction routine is used for zone plate optics to simulate airy
patterns at the focus point in first, third and fifth harmonic [12, 13].
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2.4 Treatment of Light Sources

Various light sources are incorporated in RAY. Generally the rays are starting
in a defined source volume and are emitted with a defined horizontal and
vertical divergence. Either hard (flat-top) edges or a gaussian distribution
profile can be simulated. In the latter case, rays are created statistically (see
3.1) within a ±3σ-width of the gaussian profile (i.e. more than 99.9% of the
intensity).

For synchrotron radiation beamlines, the polarised emission characteris-
tic of bending magnets, wigglers and undulators is incorporated. For other
sources, such as twin or helical undulators, or to take beam emittance effects
into account, the input can be given as an ASCII-file taken from programs
for undulator radiation: URGENT [24], SMUT [25] or WAVE [26]. In this file
the intensity and polarisation patterns of the light source must be described
as intensity (photons/seconds) and Stokes parameters at a distance of 10m
from the centre of the source in a suitable x-y mesh.

Each ray is attributed an energy, E, and a polarisation. The energy can be
varied continuously within a ‘white’ hard-edge band of E0 ± ΔE, or toggled
between three discrete energies E0, E0+ΔE and E0−ΔE. This feature allows
one to determine easily the energy dispersion and the spatial separation of
discrete energies for monochromator systems, thereby giving a picture of the
energy resolution that one can expect.

Table 2.1 lists the main features of the different light sources.
The source coordinate system for the case of bending magnet synchrotron

radiation is given in Fig. 2.3. The storage ring is located in the x-z plane,

Table 2.1. Parameters of the RAY-sources

Name Width Height Length Div. Div. S0 S1, S2, S3

x y z hor. φ vert. ψ

Matrix MA Hard Hard Hard Hard Hard 1 Input
Point PO Hard Hard Hard Hard Hard 1 Input

soft soft soft soft
Circle CI Hard Hard Hard Hard Hard 1 Input
Dipole DI Soft Soft Hard Hard Calc. Flux Calc.
Wiggler WI Soft Soft L = nλu Hard Calc. Flux Calc.
Wiggler/Undul. WU Soft Soft 0 Calc. Calc. Flux Input
Double–Undul. HU Soft Soft Hard Soft Soft Flux Input
Undul.–data file UF Soft Soft Hard File File Flux File
Helical Undul.
data file

HF Soft Soft Hard File File Flux File

Source data file FI Soft Soft Hard File File 1 Input

hrd, a hard (flat-top) edge; soft, soft – a gaussian distribution of the respective
variable within a 6σ-width is simulated; calc, calculated according to a theoretical
model (e.g. Schwinger theory); n, number of wiggler periods; L, length of undulator;
λu, period length; file, parameters taken from data-file; input, parameters to be given
interactively
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Fig. 2.3. Coordinate system for storage ring-bending magnet sources (DI pole) as
viewed from above
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Fig. 2.5. Spot pattern of synchrotron radiation sources in x-y plane, projected onto
z = 0

for clockwise revolution of the electrons the x-axis is pointing away from the
centre, while for counter-clockwise revolution the x-axis is pointing inside
the storage ring centre. This is important to be noticed especially for opti-
cal systems with large horizontal divergence (e.g. IR-beamlines), where the
source cross section is very asymmetric because of the depth-of-field effect
(see Fig. 2.5).

Examples of the intensity distribution (footprints) of various sources are
given in the Figs. 2.4 and 2.5.
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2.5 Interaction of Rays with Optical Elements

2.5.1 Coordinate Systems

The definition of the coordinate system used in RAY is shown in Figs. 2.6
and 2.7. Its origin lies in the centre of the source (with the x-axis in general
(e.g. SR) being horizontal). The coordinate system is transformed along the
optical path from the source to the optical elements and then to the image
planes. The z-axis points into the direction of the central ray, the x-axis
is perpendicular to the plane of reflection, i.e. horizontal in the case of a
vertically deviating optical setup (azimuthal angles 0◦ or 180◦), and it is
vertical for horizontal mounts (azimuthal angles 90◦ (to the right) and 270◦

(to the left), respectively). The y-axis is always the normal in the centre of the
optical element. The plane of reflection or dispersion is, thus, always the y-z
plane and the surface of the optical elements is the x-z-plane, regardless of
the azimuthal angle χ chosen. After the optical element the coordinate system
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COORDINATE SYSTEM OF RAY

α β
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1. OPTICAL
 ELEMENT

IMAGE
PLANE
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Fig. 2.6. Coordinate system (right-handed screw) and angles used in RAY. (Top)
Vertical deviation (upwards (downwards)) mount (azimuthal angle χ = 0◦ (180◦)).
(Bottom) Horizontal deviation (to the right (left)) (azimuthal angle χ = 90◦ (270◦)).
The optical element is always in the XM-ZM-plane
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z

Fig. 2.7. Coordinate systems used in RAY. For optical elements (left) the coordinate
system is fixed to the optical surface (X-Z plane). Transmission elements, screens
and image planes (right) are in the X-Y plane, the x-axis is in the horizontal plane.
The red line is the light beam

for the outgoing ray is rotated back by −χ, i.e. it has the same orientation as
before the optical element. In this way another optical element can be treated
in an identical manner.

2.5.2 Geometrical Treatment of Rays

The geometric calculations proceed in the following way:
Statistical creation of a ray within a given source volume and emission cone

and within the ‘correct’ statistics (see Chap. 3). The ray is determined by its
source coordinates (xs, ys, zs) and its direction cosines (ls,ms, ns) determined
by the horizontal and vertical emission angles ϕ and ψ (see Fig. 2.8):

�αS =

⎛
⎝
lS
mS

nS

⎞
⎠ =

⎛
⎝

sinϕ cosψ
sinψ
cosϕ cosψ

⎞
⎠ (2.3)

The vector equation of the ray is then

�x = �xS + t�αS with tε�+
0 (2.4)

or, in coordinates
⎛
⎝
x
y
z

⎞
⎠ =

⎛
⎝
xs

ys
zs

⎞
⎠+ t

⎛
⎝
lS
mS

nS

⎞
⎠ (2.5)

or

x− xs

lS
=
y − ys
mS

=
z − zs
nS

(2.6)
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Fig. 2.8. Source coordinate system: Definition of angles and direction cosines
in RAY

2.5.3 Intersection with Optical Elements

The source coordinate is translated into a new coordinate system with the
origin in the centre of the first optical element (hit by the central ray), and
the z-axis parallel to a symmetry axis of the optical element (for a simpli-
fied equation). The coordinate system is translated by the ‘distance from the
source’ to the optical element, zq, rotated around z by the azimuthal angle,
χ, and around the new x̃-axis by the grazing incidence angle, θ. The trans-
formation to the new-coordinate system is performed by the following matrix
operations:

�xS′ = Dx̃ (θ)Dz (χ)Tz (zq) �xS (2.7)

zq distance source to first optical element or nth to (n+ 1)th element
θ rotation angle around x (y-z plane)
χ azimuthal rotation around z (x-y plane) (clockwise),

which corresponds to
⎛
⎝
xS′

yS′

zS′

⎞
⎠ =

⎛
⎝

1 0 0
0 cos θ −sinθ
0 sin θ cos θ

⎞
⎠ ◦

⎛
⎝

cosχ −sinχ 0
sinχ cosχ 0

0 0 1

⎞
⎠ ◦

⎛
⎝
⎛
⎝
xS

yS
zS

⎞
⎠−

⎛
⎝

0
0
zq

⎞
⎠
⎞
⎠

(2.8)

or finally

⎛
⎝
xS′

yS′

zS′

⎞
⎠ =

⎛
⎝
xs cosχ− ys sinχ
xs sinχ cos θ + ys cosχ cos θ − (zs − zq) sin θ
xs sinχ sin θ + ys cosχ sin θ + (zs − zq) cos θ

⎞
⎠ (2.9)
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The direction cosines are transformed correspondingly:

�αS′ = Dx̃ (θ)Dz (χ) �αS, (2.10)

and finally

⎛
⎝
lS′

mS′

nS′

⎞
⎠ =

⎛
⎝
ls cosχ−ms sinχ
ls sinχ cos θ +ms cosχ cos θ
ls sinχ sin θ +ms cosχ sin θ

⎞
⎠ . (2.11)

In the new coordinate system the ray is described by
⎛
⎝
x
y
z

⎞
⎠ (t) =

⎛
⎝
xS′

yS′

zS′

⎞
⎠+ t

⎛
⎝
lS′

mS′

nS′

⎞
⎠ (2.12)

2.5.4 Misalignment

A six-dimensional misalignment of an optical element can be taken into
account: three translations of the coordinate system by δx, δy and δz and
three rotations by the misorientation angles δχ (x-y plane), δϕ (x-z plane)
and δψ (y-z plane). Since the rotations are not commutative, the coordinate
system is first rotated by these angles in the given order and then translated.
For the outgoing ray to be described in the non-misaligned system, the coor-
dinate system is backtransformed (in reverse order). Thus, the optical axis
remains unaffected by the misalignment.

2.5.5 Second-Order Surfaces

Optical elements are described by the general equation for second-order
surfaces:

F (x, y, z) = a11x2 + a22y2 + a33z2 + 2a12xy + 2a13xz
+ 2a23yz + 2a14x+ 2a24y + 2a34z + a44 = 0.

(2.13)

This description refers to a right-handed coordinate system attached to the
centre of the mirror with its surface in x-z plane, and y-axis points to the
normal). This coordinate system is used for the optical elements PL ane,
CO ne, CY linder and SP here.

Note that for the elements EL lipsoid and PA raboloid a coordinate system
is used, which again is attached to the centre of the mirror (with x-axis on the
surface), but the z-axis is parallel to the symmetry axis of this element for an
easier description in terms of the aij parameters (see Figs. 2.9 and 2.10). The
aij-values of Table 2.2 are given for this system. Thus, the rotation angle of
the coordinate system from source to element is here θ+α (EL) and 2θ (PA),
respectively, θ being the grazing incidence angle and α the tangent angle on
the ellipse.
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Fig. 2.10. Paraboloid: Definitions and coordinate systems

The individual surfaces are described by the following equations:

• Plane y = 0
• Cylinder(in z − dir.) x2 + y2 = 0
• Cylinder(in x− dir.) y2 + z2 = 0
• Sphere x2 + (y −R)2 + z2 −R2 = 0
• Ellipsoid x2/C2 + (y − y0)2/B2 + (z − z0)2/A2 − 1 = 0
• Paraboloid x2/C2 + (y − y0)2/B2 − 2P (z − z0) = 0

(2.14)

Alternatively to the input of suitable parameters, such as mirror radii or
half axes of ellipses, in an experts modus (EO), the aij parameters can be
directly given, such that any second-order surface, whatever shape it has, can
be simulated.
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2.5.6 Higher-Order Surfaces

A similar expert modus is available for surfaces, which cannot be described
by the second-order equation. The general equation is the following:

F (x, y, z) = a11x2 + signa22y2 + a33z2 + 2a12xy + 2a13xz + 2a23yz

+ 2a14x+ 2a24y + 2a34z + a44 + b12x2y + b21xy2

+ b13x2z + b31xz2 + b23y2z + b32yz2 = 0

(2.15)

Here, again all aij and bij parameters can be given explicitly by the user to
describe any geometrical surface.

For special higher order surfaces the surface is described by the following
equations.

Toroid

F (x, y, z) =
(
(R− ρ) + sign (ρ)

√
ρ2 − x2

)2

− (y −R)2 − z2 = 0 (2.16)

Sign = ±1 for concave/convex curvature.

The surface normal is calculated according to (see Chap. 5.7)

Fx =
−2x sign(ρ)√
ρ2 − x2

(
(R− ρ) + sign(ρ)

√
ρ2 − x2

)2

(2.17)

Fy = −2(y −R) (2.18)
Fz = −2z. (2.19)

Elliptical Paraboloid

F (x, y, z) =
2fx2

2f − z+z0
cos 2θ

− 2p(z + z0) − p2 = 0. (2.20)

Elliptical Toroid

In analogy to a spherical toroid, an elliptical toroid is constructed from an
ellipse (instead of a circle) in the (y, z) plane with small circles of fixed radius
ρ attached in each point perpendicular to the guiding ellipse.

The mathematical description of the surface is based on the description of
a toroid, where in each point of the ellipse a ‘local’ toroid with radius R(z)
and center (yc(z), zc(z)) is approximated (Fig. 2.11).

Following this description the elliptical toroid surface is given by

F (x, y, z) = 0 = (z − zc (z))2 + (y − yc (z))2 −
(
R (z) − ρ+

√
ρ2 − x2

)2

(2.21)
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Fig. 2.11. Construction of an elliptical toroid. The ET is locally approximated by
a conventional spherical toroid with radius R(z) and center (zc(z), yc(z))

with R(z) = a2b2
(
z2

a4
+

(
a2 − z2)
a2b2

) 3
2

=
1
ab

(
b2 − a2
a2

z2 + a2
) 3

2

zc(z) = z −R(z) sinα(z),
yc(z) = y(z) +R(z) cosα(z),
z′c = 1 −R′ sinα−Rα′ cosα,
y′c = y′ +R′ cosα−Rα′ sinα,
y(z) = − b

a

√
a2 − z2,

α = arctan(y′) = arctan
(
b

a

z√
a2 − z2

)
,

y′ =
∂y

∂z
= tanα =

b

a

z√
a2 − z2

α′ =
∂α

∂z
=

y′′

1 + y′2
,

y′′ =
∂2y

∂z2
=

ab

(a2 − z2) 3
2
.

The surface normal is given by the partial derivatives

∂F

∂x
= 2

x√
ρ2 − x2

(
R− ρ+

√
ρ2 − x2

)
, (2.22)
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∂F

∂y
= 2(y − yc), (2.23)

∂F

∂z
= 2(z − zc(1 − z′c) − 2y′c(y − yc) − 2R′

(
R− ρ+

√
ρ2 − x2

)
. (2.24)

2.5.7 Intersection Point

The intersection point (xM, yM, zM) of the ray with the optical element is
determined by solving the quadratic equation in t generated by inserting (2.12)
into (2.13) or (2.15). For the special higher-order surfaces (TO, EP, ET) the
intersection point is determined iteratively.

Then the local surface normal for this intersection point �n = n(xM, yM, zM)
is found by calculating the partial derivative of F (xM, yM, zM)

�f = ∇F, (2.25)

with the components

fx =
∂F

∂x
fy = −∂F

∂y
fz =

∂F

∂z
. (2.26)

The local surface normal is then given by the unit vector

�n =

⎛
⎝
nx

ny

nz

⎞
⎠ =

1√
fx

2 + fy2 + fz2

⎛
⎝
fx
fy
fz

⎞
⎠ . (2.27)

Whenever the intersection point found is outside the given dimensions of the
optical element, the ray is thrown away as a geometrical loss and the next ray
starts within the source according to Chap. 5.2.

2.5.8 Slope Errors, Surface Profiles

Once the intersection point and the local surface normal is found, these are
the parameters that are modified to include real surfaces as deviations from
the mathematical surface profile, namely figure and finish errors (slope errors,
surface roughness), thermal distortion effects or measured surface profiles.

The surface normal is modified incrementally by rotating the normal
vector in the y-z (meridional plane) and in the x-y plane (sagittal). The
determination of the rotation angles depends on the type of error to be
included.

1. Slope errors, surface roughness: the rotation angles are chosen statistically
(according to the procedure described in Sect. 2.3.1) within a 6σ-width of
the input value for the slope error.

2. Thermal bumps: a gaussian height profile in x- and z-direction with a given
amplitude, and σ-width can be put onto the mirror centre.
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3. Cylindrical bending: a cylindrical profile in z-direction (dispersion direc-
tion) with a given amplitude can be superimposed onto the mirror surface.

4. Measured surface profiles, e.g. by a profilometer.
5. Surface profiles calculated separately, e.g. by a finite element analysis

program.

In cases (2–5) the modified mirror is stored in a 251 × 251 surface mesh
which contains the amplitudes (y-coordinates). For cases (2) and (3) this mesh
is calculated within RAY, for the cases (4) and (5) ASCII data files with
surface profilometer data (e.g. LTP or ZEISS M400 [27]) or finite-element-
analysis data (e.g. ANSYS [28]) can be read in. The new y-coordinate of
the intersection point and the local slope are interpolated from such a table
accordingly.

2.5.9 Rays Leaving the Optical Element

For those rays that have survived the interaction with the optical element –
geometrically and within the reflectivity statistics (Chap. 6) – the direction
cosines of the reflected/transmitted/refracted ray (�α2) = (l2,m2, n2) are cal-
culated from the incident ray (�α1) = (l1,m1, n1) and the local surface normal
�n.

Mirrors

For mirrors and crystals the entrance angle, α, is equal to the exit angle, β.
In vector notation this means that the cross product is

n× (�α2 − �α1) = 0, (2.28)

since the difference vector is parallel to the normal. For the direction cosines
of the reflected ray the result is given by

α2 = �α1 − 2(�n ◦ �α1)�n (2.29)

or in coordinates
l2 = l1 − 2nx

lnx +mny + nnz

nx
2 + ny

2 + nz
2

(2.30)

and, correspondingly, for m2 and n2.

Gratings

The emission angle β for diffraction gratings is obtained by the grating
equation

kλ = d (sinα+ sinβ) , (2.31)

k, diffraction order; λ, wavelength; d, grating constant.
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1. The grating is rotated by δχ = a tan(nx/ny) around the z-axis and by
δψ = a sin(nz) around the x-axis, so that the intersection point is plane
(surface normal parallel to the y-axis). The grating lines are parallel to the
x-direction.

2. Then the direction cosines of the diffracted beam are determined by

⎛
⎝
l2
m2

n2

⎞
⎠ =

⎛
⎜⎝
l1√
m2

1 + n2
1 − (n1 − a1)2

n1 − a1

⎞
⎟⎠ , (2.32)

a1 = k
λ

d
cos δψ.

3. The grating is rotated back to the original position by −δψ and −δχ.

For varied line spacing (VLS) gratings, the local line density n = 1/d(l/mm)
as a function of the (x, z)-position is determined by [29]

n = n0 ·
(
1 + 2b2z + 3b3z2 + 4b4z3 + 2b5x+ 3b6x2 + 4b7x3

)
. (2.33)

Transmitting Optics

For transmitting optics (SL it, FO il) the direction of the ray is unchanged by
geometry. However, diffraction is taken into account for the case of rectangular
or circular slits by randomly modifying the direction of each ray according to
the probability for a certain direction ϕ

P (ϕ) =
sinu
u
, (2.34)

with u =
πb sinϕ
λ

(b, slit opening; λ, wavelength),

so that for a statistical ensemble of rays a Fraunhofer (rectangular slits) or
bessel pattern (circular slits) appears (see Fig. 2.12). ZO neplate transmitting
optics are described in [12, 13].

Azimuthal Rotation

After successful interaction with the optical element the surviving ray is
described in a coordinate system, which is rotated by the reflection angle
θ and the azimuthal angle χ, such that the z-axis follows once again the
direction of the outgoing central ray as it was for the incident ray. The old
values of the source/mirror points and direction cosines are replaced by these
new ones, so that a new optical element can be attached now in similar way.
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Fig. 2.12. Fraunhofer diffraction pattern on a rectangular slit

2.5.10 Image Planes

If the ray has traversed the entire optical system, the intersection points
(xI , yI) with up to three image planes at the distances zI1,2,3 are determined
according to (

xI

yI

)
=
(
x
y

)
+

1
n

(
l
m

)
(zI1,2,3 − z). (2.35)

Once a ray reaches the image plane or whenever a ray is lost within the optical
system a new ray is created within the source and the procedure starts all over.

2.5.11 Determination of Focus Position

For the case of imaging systems, if the focus position is to be determined, the
x- and y-coordinates of that ray which has the largest coordinates are stored
along the light beam in the range of the expected focal position (search in a
distance from last OE of . . .+/− . . .). The so found cross section of the beam
(width and height) is displayed graphically. Since at each position a different
ray may be the outermost one, there may be bumps in this focal curve which
depend on the quality of the imaging. Especially, for optical systems with large
divergences (and thus large optical aberrations) or which include dispersing
elements, this curve is only schematic and serves as a quick check of the focal
properties of the system.

2.5.12 Data Evaluation, Storage and Display

The x, z-coordinates of the intersection point (x, y for source, slits, foils,
zoneplates and image planes) and the angles l, n (l, m, respectively) are stored
into 100 × 100 matrices. These matrices are multichannel arrays, one for the
source, for each optical element and for each image plane, whose dimensions



2 The BESSY Raytrace Program RAY 29

(and with it the pixel size) have been fixed before in a ‘test-raytrace’ run.
They represent the illuminated surface in x-z projection. The corresponding
surface pixel element that has been hit by a ray is increased by 1, so that
intensity profiles and/or heat load can be displayed.

Additionally, the x- and z-coordinates (y, respectively) of the first 10,000
rays are stored in a 10,000x2 ASCII matrix to display footprint patterns of
the optical elements, for point diagrams at the image planes or for further
evaluation outside the program.

2.6 Reflectivity and Polarisation

Not only the geometrical path of the rays is followed, but also the inten-
sity and polarisation properties of each ray are traced throughout an optical
setup. Thus, it is easily possible to preview depolarisation effects throughout
the optical path, or to optimize an optical setup for use as, for example, a
polarisation monitor. For this, each ray is treated individually with a defined
energy and polarisation state.

RAY employs the Stokes formalism for this purpose. The Stokes vector
�S = (S0, S1, S2, S3) describing the polarisation (S1, S2: linear, S3: circular
polarisation) for each ray is given either as free input parameter or, for dipole
sources, is calculated according to the Schwinger theory. S0, the start intensity
of the ray from the source

(
S0 =

√
S1

2 + S2
2 + S3

2
)
, is set to 1 for the artificial

sources. It is scaled to a realistic photon flux value for the synchrotron sources
Dipole, Wiggler or the Undulator-File.

The Stokes vector is defined by the following equations:

S0 =
[
(Eo

p)2 + (Eo
s)

2
]/

2 = 1,

S1 =
[
(Eo

p)2 − (Eo
s)

2
]/

2 = Pl cos(2δ),

S2 = Eo
pE

o
s cos(φp − φs) = Pl sin(2δ),

S3 = −Eo
pE

o
s sin(φp − φs) = Pc, (2.36)

with the two components of the electric field vector defined as

Ep,s(z, t) = Eo
p,s exp [i (ωt− kz + φp,s)] . (2.37)

and Pl, Pc are the degree of linear and circular polarisation, respectively. δ is
the azimuthal angle of the major axis of the polarisation ellipse. Note that

Pl = P cos(2ε)
and Pc = P sin(2ε), (2.38)

with P being the degree of total polarisation and ε the ellipticity of the
polarisation ellipse (tan ε = Rp/Rs) .
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Table 2.3. Definition of circular polarisation

Phase φp−s 90◦, −270◦ −90◦, 270◦

(π/2, −3π/2) (−π/2, 3π/2)

Rotation sense (in time) Clockwise Counter-clockwise
Rotation sense (in space) Counter-clockwise Clockwise
Polarisation (optical def.) R(ight) CP L(eft) CP
Helicity (atomic def.) Negative (σ−) Positive (σ+)
Stokes vector Negative Positive

Table 2.4. Physical interaction for the different optical components

Mirrors Gratings Foils Slits Zone-plates Crystals

Fresnel
equations

Diffraction Fresnel
equations

– – Dynamic
theory

Reflectivity Efficiency Transmission Transmission Transmission Reflectivity
Rs, Rp, Δsp Es, Ep, Δsp Ts, Tp, Δsp Ts, Tp = 1

Δsp = 0
Ts, Tp = 1,
Δsp = 0

Rs, Rp, Δsp

Since the SR is linearly polarised within the electron orbital plane (Iperp =
0), the plane of linear polarisation is coupled to the x-axis (i.e. horizontal).
Thus, the Stokes vector for SR is defined in our geometry as (see Chap. 3.4)

Plin = S1 = (Iperp − Ipar)/(Iperp + Ipar) = (Iy − Ix)/(Iy + Ix) = −1, (2.39)

S1 = +1 would correspond to a vertical polarisation plane.
For the definition of the circular polarisation the nomenclature of

Westerfeld et al. [30] and Klein/Furtak [31] has been used. This is summarised
in Table 2.3:

For example, for the case of synchrotrons and storage rings, the radiation
that is emitted off-plane, upwards, has negative helicity, right-handed CP
(S3 = −1), when the electrons are travelling clockwise, as seen from the top.

The modification of the Stokes vector throughout the beamline by inter-
action of the light with the optical surface is described by the following steps
(see e.g. [28]):

(1) Give each ray a start value for the Stokes parameter within the source,
Sini, according to input or as calculated for SR sources

(2) Calculate the intensity loss at the first optical element for s- and p-
polarisation geometry and the relative phase, Δ = δs − δp, according
to the physical process involved (see Table 2.4):
• Mirrors, Foils
The optical properties of mirrors, multilayers, filters, gratings and crystals
are calculated from the compilation of atomic scattering factors in the
spectral range from 30 eV to 30keV [32]. Another data set covers the X-
ray range from 5 up to 50 keV [33]. Additional data for lower energies
down to 1 eV are also available for some elements and molecules [34].
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10-3 10-2 10-1 100 101 102

Structure factors fo, fH, fHC

Cromer f1,f2
(Z=2-92)

Henke (Z=1-92) f1, f2

Palik (Al, Au, C, Cr, Cu, Ir, Ni, Os, Pt, Si...  n, k)

Molecules: Al2O3, MgF2, Diamond, SiC, SiO2...n,k

Photon Energy (keV)

Optical data tables for RAY

Fig. 2.13. Data bases used for the calculation of optical properties

A summary of the various data tables available within the program is
given in Fig. 2.13. For compound materials that can be defined by the case
sensitive chemical formula (e.g. MgF2), the contributions of the chemical
elements are weighted according to their stochiometry. A tabulated or,
if not available, calculated value for the density is proposed but can be
changed. The surface roughness of mirrors or multilayers is taken into
account according to the Nevot–Croce formalism [35].

All reflection mirrors and transmission foils in an optical setup can
have a multilayer coating (plus an additional top coating). The optical
properties of these structures are calculated in transmission and reflection
geometry by a recursive application of the Fresnel equations. For periodic
multilayers, the layer thickness, the density and the surface roughness
must be specified for each type of interface. For aperiodic structures like
broad-band or supermirrors, the exact structure has to be provided in a
data-file.
• Gratings
For the calculation of (monolayer covered) reflection gratings, a code
developed by Neviere is used [36], which allows for the calculation for
three different grating profiles (sinusoidal, laminar or blazed). In addition
to fixed deviation angle mounts, optionally the incidence angle can be
coupled to the photon energy and the cff factor in the case of a Petersen
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SX700 type monochromator (PGM or SGM with a plane pre-mirror which
enables the deviation angle across the grating to be varied).
• Crystals
For crystals the diffraction properties are calculated from the dynamical
theory using the Darwin–Prins formalism [37]. For all crystals with zinc
blende structure such as Si, Ge or InSb as well as for quartz and beryl,
the crystal structure factors are determined within the program for any
photon energy and the corresponding Bragg angle. For other crystals, the
rocking curves can also be evaluated if the structure factors are known
from other sources. The calculation is possible for any allowed crystal
reflection and asymmetry (see Chap. 2.7).

(3) Transform the incident Stokes vector, �Sini, into the coordinate system of
the optical element �SM by rotation around the azimuthal angle χ (R-
matrix)

�SM = Rỹ(χ)�Sini, (2.40)

�SM =

⎛
⎜⎜⎜⎝

S0M

S1M

S2M

S3M

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 0 0 0
0 cos 2χ sin 2χ 0
0 − sin 2χ cos 2χ 0
0 0 0 1

⎞
⎟⎟⎟⎠ •

⎛
⎜⎜⎜⎝

S0ini

S1ini

S2ini

S3ini

⎞
⎟⎟⎟⎠ . (2.41)

Thus, the azimuthal angle of an optical element determines the polarisa-
tion geometry of the interaction. For instance, for horizontally polarised
synchrotron radiation (S1 = −1), an azimuthal angle of χ = 0◦ corre-
sponds to an s-polarisation geometry (polarisation plane perpendicular
to the reflection plane) with the beam going upwards. Since the coordi-
nate system is right-handed, χ = 90◦ corresponds to a deviation to the
right, when looking with the beam and a p-polarisation geometry (polar-
isation plane parallel to reflection plane). Similarly χ = 180◦ and 270◦,
respectively, determine a beam going down and to the left, respectively.
Note that the azimuthal angle is coupled to the coordinate system and not
to the polarisation state. χ = 0 ◦ always determines a deviation upwards,
but this may be an s-polarisation geometry, as in our example above, and
can also be a p-geometry (when S1inc = +1).

(4) Calculate the Stokes vector after the optical element �Sfinal by applying
the Müller matrix, M , onto �SM

�Sfinal =M�SM (2.42)
⎛
⎜⎜⎜⎝

S0final

S1final

S2final

S3final

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

Rs+Rp
2

Rp−Rs
2 0 0

Rp−Rs
2

Rs+Rp
2 0 0

0 0 RsRp cosΔ RsRp sinΔ

0 0 −RsRp sinΔ RsRp cosΔ

⎞
⎟⎟⎟⎟⎠

◦

⎛
⎜⎜⎜⎝

S0M

S1M

S2M

S3M

⎞
⎟⎟⎟⎠ .

(2.43)
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(5) Accept this ray only when its intensity (S0,final) is within the ‘correct’
statistic, i.e. when

(S0,final/S0,ini − ran (z)) > 0. (2.44)

(6) Rotate the Stokes vector �Sfinal back by −χ and take this as incident Stokes
vector for the next optical element

�S′
ini = Rỹ(−χ)�Sfinal. (2.45)

(7) Store the Stokes vector for this optical element, go to the next one (2) or
start with the next ray within the source (1).

2.7 Crystal Optics (with M. Krumrey)

For ray tracing, the geometrical point of view is most relevant. In this aspect,
the main difference between crystals and mirrors or reflection grating is that
the radiation is not reflected at the surface, but at the lattice planes in the
material. In contrast to gratings which have already been treated as dispersive
elements, reflection for a given incidence angle on the lattice plane occurs only
if the well-known Bragg condition is fulfilled:

λ = 2d sin Θ, (2.46)

where λ is the wavelength, d is the lattice plane distance and Θ is the incidence
angle of the radiation with respect to the lattice plane. The selected lattice
planes are not necessarily parallel to the surface, resulting in an asymmetry
described by the asymmetry factor b:

b =
sin(θB − α)
sin(θB + α)

, (2.47)

with ΘB being the Bragg angle for which (2.46) is fulfilled and α the angle
between the lattice plane and the crystal surface.

The subroutine package for crystal optics in RAY is based on the descrip-
tion of dynamic theory [38–40] as given by Matsushita and Hashizume in [41]
and the paper from Batterman and Cole [37]. The reflectance is calculated
according to the Darwin–Prins formalism, which requires the knowledge of
the crystal structure factors Fo, Fh and Fhc. These factors can be derived
for any desired crystal reflection, identified by the Miller indices (hkl), if the
crystal structure, the chemical elements involved and the lattice constants
(or constants for non-cubic crystals) are known. For some crystals with zinc
blende structure (e.g. Si, InSb, etc.) or quartz structure, the structure factors
are calculated automatically. This calculation combines the geometrical prop-
erties, especially the atomic positions in the unit cell which are read from a
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file, with the element-specific atomic scattering factors. The atomic scattering
factor, f , is written here as

f = f0 + Δf1 + Δf2. (2.48)

This form allows one to separate the form factor f0, which is calculated in
dependence on (sin θB)/λ based on a table of nine coefficients which are read
for every chemical element from a file. The photon energy dependent anoma-
lous dispersion corrections Δf1 and Δf2 are calculated from the Henke tables
for photon energies up to 30 keV. For higher photon energies, the Cromer
tables are directly used up to 50 keV and extrapolated beyond. Both data sets
are also stored in files for all chemical elements.

Using the structure factors Fo, Fh and Fhc, which can, for other crystals,
also be inserted by the user, the reflectance is obtained as

R = (η ±
√
η2 − 1)s. (2.49)

Here, s is simply defined as

s =
√
Fh/Fhc

(2.50)

while the parameter η is calculated according to

η =
2b(α− ΘB) sin 2Θ + γFo(1 − b)

2γ |P | s√|b| , (2.51)

where γ is defined as

γ =
reλ

2

πVC
. (2.52)

Here, re is the classical electron radius and Vc is the crystal unit cell volume.
The polarisation is taken into account by the factor P , which equals unity for
σ-polarisation and cos 2ΘB for π-polarisation.

In addition to the reflectance, the dispersion correction ΔΘ for the incident
and the outgoing ray at the crystal surface is calculated. For this purpose a
crystal reflection curve is calculated according to (2.49) and the difference from
its centre to the Bragg angle ΘB is extracted. Only in the case of symmetrically
cut crystals are the dispersion corrections identical:

ΔΘout = bΔΘin. (2.53)

At present, plane and cylindrical crystals are treated in reflection geometry
(Bragg case). Also crystals with a d-spacing gradient (graded crystals with
d = d(z)) are taken into account. This versatility enables a realistic sim-
ulation to be made of nearly every X-ray-optical arrangement in use with
conventional X-ray sources or at synchrotron radiation facilities (double-, four
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Fig. 2.14. Rocking curves of Si(311) crystal with asymmetric cut (15◦ and −15◦)
and symmetric cut (0◦) for σ-polarisation at a photon energy of 10 keV

crystal monochromators, 2-bounce, 4-bounce in-line geometries for highest
resolution, dispersive or non-dispersive settings, etc. [42, 43]).

Typical X-ray reflectance curves obtained with this subroutine package are
shown for illustration. The raytracing code was applied for the calculations
of Si(311) asymmetrically and symmetrically cut flat crystals. The angle of
asymmetry was chosen to be 15◦ and −15◦. In Fig. 2.14 the comparative
results between RAY and REFLEC [12] codes for the σ-polarisation state are
shown. RAY results in this figure are represented by the noisy curve. The
statistics are determined by the number of rays calculated (106 incident rays,
distributed into 100 channels).

2.8 Outlook: Time Evolution of Rays
(with R. Follath, T. Zeschke)

In this article a program has been described, which is capable of simulating the
behaviour of an optical system. Originally the program was designed for the
calculation of X-ray optical setups on electron storage rings for synchrotron
radiation. Similar programs had been written at most of the facilities for
in-house use tailored to their specific applications. Many of them have not
survived. Over more than 20 years of use by many people and continuous
upgrade, debugging and development, the RAY-program described here has
turned into a versatile optics database, by which almost all of the existing
synchrotron radiation beamlines from the infrared region to the hard X-ray
range can be accessed. In addition, other sources can be modelled since the
light sources are described by relatively few parameters.
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However, the program has limitations, of course, and it is essential to be
aware of them when using it:

• The results are valid only within the mathematical or physical model
implemented.

• The program may still have bugs (it has – definitely!!).
• The user may have made typing errors in the input menu.
• The user may have made errors in interpreting unclear or ambiguous input

parameters or results.

The program is in continuous development and new ideas about sources or
optical elements are implemented relatively fast, so that new demands can be
addressed quickly.

One of the latest developments was driven by the advent of the new gen-
eration Free Electron Light (FEL) Sources at which the time structure of
the radiation in the femto-second regime is of utmost importance. As outlook
for the future of raytracing this development, which is still in progress, is
discussed here briefly.

To handle the time structure, a ray is not only described by its geometry,
energy and polarisation, but also by its geometrical path length or, in other
words, by its travel time.

This enables one to follow the time evolution of an ensemble of rays, start-
ing with a well-defined time-structure in the source, through an optical system.
By storing the individual path lengths of each ray a pulse-broadening at each
element and at the focal plane can be detected.

In the source, each ray is given a start-clock time, t0, which can be either
t0 = 0 for all rays (complete coherence), or have a gaussian or flat-top
distribution (less than complete coherence).

The path length of a ray is calculated as difference between the coordinates
of the previous optical element (x old, y old, z old) (or, for the first optical
element, the source coordinates (x so, y so, z so)) and the actual coordinates
(x,y,z). The path length is measured with respect to the path length of the
principal ray, given by the distance to the preceding element zq. Only geo-
metrical differences are taken into account, no phase changes on reflection or
penetration effects on multilayers are considered.

The path length is given by the equation

pl =
√

((x− xold)2 + (y − yold)2 + (z − zold)2) − zq. (2.54)

The phase of the ray with respect to the central ray and its relative travel
time is then

ϕ =
2π
λ

pl, (2.55)

t =
pl
c

c: speed of light (m s−1). (2.56)

Assuming pl in millimetre, the travel time is given in nanoseconds.
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Fig. 2.15. Illumination of a reflection grating and baffling to preserve the time
structure of the light beam
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Fig. 2.16. Time structure of the rays after travelling through the beamline;
confined–unconfined by the grating of Fig. 2.15

As an example, Fig. 2.15 shows the illumination of a reflection grating,
which is part of a soft X-ray plane grating monochromator (PGM-) beamline
that has been modelled for the TESLA FEL project [44], in which the conser-
vation of the fs-time structure is essential. By baffling the illuminated grating
length down to 10mm in the dispersion direction the pulse broadening of the
monochromatic beam (Fig. 2.16) can be kept well within the required 100 fs,
which corresponds to the time structure of a SASE-FEL-source. As a result,
the pulse length remains essentially unchanged by the optics.

By combining the path length information of each ray with its spatial
information (footprint on an optical element or focus) a three-dimensional
space–time picture over an ensemble of rays can be constructed. Such an
example is given in Fig. 2.17. Here the focus of a highly demagnifying toroidal
mirror (10:1) illuminated at grazing incidence (2.5◦) by a diffraction-limited
gaussian source with σ = 0.2 mm cross section and σ = 0.3 mrad divergence
is shown. The illumination is coherent, i.e. all rays have the same start-time
within the source. The focus (Fig. 2.17a) shows the typical blurring due to
coma and astigmatic coma, and the grey scale colour attributed to each ray
(Fig. 2.17b) determines the relative travel time (i.e. phase) with respect to
the central ray. This is a snap shop over the focus; rays arrive at the focus in
a time indicated by an increasing grey-scale.
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(a) (b) 

Fig. 2.17. Footprint of rays (a) and their individual phases (b) arriving at the focus
of a toroidal mirror in grazing incidence (θ = 2.5◦, 10:1 demagnification)

Fig. 2.18. Interference pattern at the focus of a 2.5◦ incidence toroidal mirror, 10:1
demagnification

In the individual phases an interference pattern in the coma blurred wings
becomes visible. After complex addition of all rays within a certain array
element according to

I =

∣∣∣∣∣∣
∑

j

eiϕj

∣∣∣∣∣∣

2

, (2.57)

an interference pattern becomes visible also in the intensity profile (Fig. 2.18).
This profile looks very similar to the results obtained with programs on
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the basis of Fourier-Optics (see this book [6]) and shows the potential of
a conventional raytrace program in treating interference effects.

So far in this simple example only the phase and the space coordinates of
the rays have been connected to demonstrate the treatment of collective inter-
ference effects in the particle model. This model can be extended further to
incoherent or partially coherent illumination simply by modifying the incident
time-variable of the source suitably. Coherent packages within a total ensemble
of rays can be extracted, which are determined by the same wavelength, the
same polarisation plane, the same x-y-position (lateral coherence length) or
the same path length (transversal coherence). Hence, there is a huge potential
for further development of wave-phenomena within the particle model.
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